72 resultados para Roman Curia
Resumo:
Infant burials in Roman settlements are a common observation. Even though ancient authors provide information many questions remain uncertain. For instance, the burial ritual for stillbirth and infanticide neonates is not specifically mentioned. This study therefore aimed to investigate the application of stable nitrogen (δ15N) and carbon (δ13C) isotopes from neonatal bone collagen in differentiating between a breastfeeding signal and stillbirth or a short survival of less than ten days. For this purpose collagen of 11 human and 14 non-human bones from the Roman settlement Petinesca (1st - 3rd century AD, Switzerland) was extracted and analysed for δ15N and δ13C. Tooth histology was performed for the central incisor and canine of the right mandible in order to investigate the presence of a neonatal line. According to the length of the long bones the age varied between 8.5 lunar months to 2 months ex utero. The stable isotope results provided a breastfeeding signal for all except one individual where the breastfeeding signal was absent. The tooth histological analysis of this individual exhibited no neonatal line. It is concluded that stable isotope analysis could indicate stillbirth or a short survival after birth. The tooth histology confirmed the stable isotope results. Furthermore, this might indicate that the burial ritual did not differentiate between stillbirth and neonates, who died within the time span stated by ancient authors of up to 40 days of age or the appearance of teeth. However, for further justifications additional research is going to be conducted.
Resumo:
The spatial context is critical when assessing present-day climate anomalies, attributing them to potential forcings and making statements regarding their frequency and severity in a long-term perspective. Recent international initiatives have expanded the number of high-quality proxy-records and developed new statistical reconstruction methods. These advances allow more rigorous regional past temperature reconstructions and, in turn, the possibility of evaluating climate models on policy-relevant, spatio-temporal scales. Here we provide a new proxy-based, annually-resolved, spatial reconstruction of the European summer (June–August) temperature fields back to 755 CE based on Bayesian hierarchical modelling (BHM), together with estimates of the European mean temperature variation since 138 BCE based on BHM and composite-plus-scaling (CPS). Our reconstructions compare well with independent instrumental and proxy-based temperature estimates, but suggest a larger amplitude in summer temperature variability than previously reported. Both CPS and BHM reconstructions indicate that the mean 20th century European summer temperature was not significantly different from some earlier centuries, including the 1st, 2nd, 8th and 10th centuries CE. The 1st century (in BHM also the 10th century) may even have been slightly warmer than the 20th century, but the difference is not statistically significant. Comparing each 50 yr period with the 1951–2000 period reveals a similar pattern. Recent summers, however, have been unusually warm in the context of the last two millennia and there are no 30 yr periods in either reconstruction that exceed the mean average European summer temperature of the last 3 decades (1986–2015 CE). A comparison with an ensemble of climate model simulations suggests that the reconstructed European summer temperature variability over the period 850–2000 CE reflects changes in both internal variability and external forcing on multi-decadal time-scales. For pan-European temperatures we find slightly better agreement between the reconstruction and the model simulations with high-end estimates for total solar irradiance. Temperature differences between the medieval period, the recent period and the Little Ice Age are larger in the reconstructions than the simulations. This may indicate inflated variability of the reconstructions, a lack of sensitivity and processes to changes in external forcing on the simulated European climate and/or an underestimation of internal variability on centennial and longer time scales.