133 resultados para Rna Transcripts
Resumo:
PURPOSE: Activation of the double-stranded RNA-activated protein kinase (PKR) leads to the induction of various pathways including the down-regulation of translation through phosphorylation of the eukaryotic translation initiation factor 2alpha (eIF-2alpha). There have been no reports to date about the role of PKR in radiation sensitivity. EXPERIMENTAL DESIGN: A clonogenic survival assay was used to investigate the sensitivity of PKR mouse embryo fibroblasts (MEF) to radiation therapy. 2-Aminopurine (2-AP), a chemical inhibitor of PKR, was used to inhibit PKR activation. Nuclear factor-kappaB (NF-kappaB) activation was assessed by electrophoretic mobility shift assay (EMSA). Expression of PKR and downstream targets was examined by Western blot analysis and immunofluorescence. RESULTS: Ionizing radiation leads to dose- and time-dependent increases in PKR expression and function that contributes to increased cellular radiation resistance as shown by clonogenic survival and terminal nucleotidyl transferase-mediated nick end labeling (TUNEL) apoptosis assays. Specific inhibition of PKR with the chemical inhibitor 2-AP restores radiation sensitivity. Plasmid transfection of the PKR wild-type (wt) gene into PKR(-/-) MEFs leads to increased radiation resistance. The protective effect of PKR to radiation may be mediated in part through NF-kappaB and Akt because both NF-kappaB and Akt are activated after ionizing radiation in PKR+/+ but not PKR-/- cells. CONCLUSIONS: We suggest a novel role for PKR as a mediator of radiation resistance modulated in part through the protective effects of NF-kappaB and Akt activation. The modification of PKR activity may be a novel strategy in the future to overcome radiation resistance.
Resumo:
Here we describe a collection of methods that have been adapted to produce highly efficient nuclear and cytoplasmic extracts from adenovirus-infected HeLa cells. We describe how to produce extracts from virus-infected cells and how to analyze RNA splicing in vitro using T7 RNA polymerase-derived splicing substrate RNAs.
Resumo:
Microarrays have established as instrumental for bacterial detection, identification, and genotyping as well as for transcriptomic studies. For gene expression analyses using limited numbers of bacteria (derived from in vivo or ex vivo origin, for example), RNA amplification is often required prior to labeling and hybridization onto microarrays. Evaluation of the fidelity of the amplification methods is crucial for the robustness and reproducibility of microarray results. We report here the first utilization of random primers and the highly processive Phi29 phage polymerase to amplify material for transcription profiling analyses. We compared two commercial amplification methods (GenomiPhi and MessageAmp kits) with direct reverse-transcription as the reference method, focusing on the robustness of mRNA quantification using either microarrays or quantitative RT-PCR. Both amplification methods using either poly-A tailing followed by in vitro transcription, or direct strand displacement polymerase, showed appreciable linearity. Strand displacement technique was particularly affordable compared to in vitro transcription-based (IVT) amplification methods and consisted in a single tube reaction leading to high amplification yields. Real-time measurements using low-, medium-, and highly expressed genes revealed that this simple method provided linear amplification with equivalent results in terms of relative messenger abundance as those obtained by conventional direct reverse-transcription.
Resumo:
BACKGROUND: As for Cystic Fibrosis (CF) and many other hereditary diseases there is still a lack in understanding the relationship between genetic (e.g. allelic) and phenotypic diversity. Therefore methods which allow fine quantification of allelic proportions of mRNA transcripts are of high importance. METHODS: We used either genomic DNA (gDNA) or total RNA extracted from nasal cells as starting nucleic acid template for our assay. The subjects included in this study were 9 CF patients compound heterozygous for the F508del mutation and each one F508del homozygous and one wild type homozygous respectively. We established a novel ligation based quantification method which allows fine quantification of the allelic proportions of ss and ds CFTR cDNA. To verify reliability and accuracy of this novel assay we compared it with semiquantitative fluorescent PCR (SQF-PCR). RESULTS: We established a novel assay for allele specific quantification of gene expression which combines the benefits of the specificity of the ligation reaction and the accuracy of quantitative real-time PCR. The comparison with SQF-PCR clearly demonstrates that LASQ allows fine quantification of allelic proportions. CONCLUSION: This assay represents an alternative to other fine quantitative methods such as ARMS PCR and Pyrosequencing.
Resumo:
We report on a 20-year-old male with severe Charcot-Marie-Tooth (CMT) disease and a de novo deletion (c.281delG, p.G94AfsX17) on the paternal PMP22 allele harboring c.353C>T (p.T118M). RNA-based sequence analysis confirmed the absence of nonsense-mediated decay and the presence of the mutant transcripts in Epstein-Barr virus-transformed lymphoblastoid cells of our patient. His clinical findings included early onset of polyneuropathy, loss of muscle mass with distal pareses, hammer toes, and progressive scoliosis. There was no neuropsychological alteration. Our results suggest that the deletion c.281delG alone is responsible for the severe CMT phenotype. To the best of our knowledge, this is the second report on a proven paternal origin of a de novo single-base mutation in the PMP22 gene.
Resumo:
Background Molecular characterization of breast and other cancers by gene expression profiling has corroborated existing classifications and revealed novel subtypes. Most profiling studies are based on fresh frozen (FF) tumor material which is available only for a limited number of samples while thousands of tumor samples exist as formalin-fixed, paraffin-embedded (FFPE) blocks. Unfortunately, RNA derived of FFPE material is fragmented and chemically modified impairing expression measurements by standard procedures. Robust protocols for isolation of RNA from FFPE material suitable for stable and reproducible measurement of gene expression (e.g. by quantitative reverse transcriptase PCR, QPCR) remain a major challenge. Results We present a simple procedure for RNA isolation from FFPE material of diagnostic samples. The RNA is suitable for expression measurement by QPCR when used in combination with an optimized cDNA synthesis protocol and TaqMan assays specific for short amplicons. The FFPE derived RNA was compared to intact RNA isolated from the same tumors. Preliminary scores were computed from genes related to the ER response, HER2 signaling and proliferation. Correlation coefficients between intact and partially fragmented RNA from FFPE material were 0.83 to 0.97. Conclusion We developed a simple and robust method for isolating RNA from FFPE material. The RNA can be used for gene expression profiling. Expression measurements from several genes can be combined to robust scores representing the hormonal or the proliferation status of the tumor.
Resumo:
Impaired function of shoulder muscles, resulting from rotator cuff tears, is associated with abnormal deposition of fat in muscle tissue, but corresponding cellular and molecular mechanisms, likely reflected by altered gene expression profiles, are largely unknown. Here, an analysis of muscle gene expression was carried out by semiquantitative RT-PCR in total RNA extracts of supraspinatus biopsies collected from 60 patients prior to shoulder surgery. A significant increase of alpha-skeletal muscle actin (p = 0.0115) and of myosin heavy polypeptide 1 (p = 0.0147) gene transcripts was observed in parallel with progressive fat deposition in the muscle, assessed on parasagittal T1-weighted turbo-spin-echo magnetic resonance images according to Goutallier. Upregulation of alpha-skeletal muscle actin and of myosin heavy polypeptide-1 has been reported to be associated with increased muscle tissue metabolism and oxidative stress. The findings of the present study, therefore, challenge the hypothesis that increased fat deposition in rotator cuff muscle after injury reflects muscle degeneration.
Resumo:
Translation initiation factors eIF4A and eIF4G form, together with the cap-binding factor eIF4E, the eIF4F complex, which is crucial for recruiting the small ribosomal subunit to the mRNA 5' end and for subsequent scanning and searching for the start codon. eIF4A is an ATP-dependent RNA helicase whose activity is stimulated by binding to eIF4G. We report here the structure of the complex formed by yeast eIF4G's middle domain and full-length eIF4A at 2.6-A resolution. eIF4A shows an extended conformation where eIF4G holds its crucial DEAD-box sequence motifs in a productive conformation, thus explaining the stimulation of eIF4A's activity. A hitherto undescribed interaction involves the amino acid Trp-579 of eIF4G. Mutation to alanine results in decreased binding to eIF4A and a temperature-sensitive phenotype of yeast cells that carry a Trp579Ala mutation as its sole source for eIF4G. Conformational changes between eIF4A's closed and open state provide a model for its RNA-helicase activity.
Resumo:
RNA helicases represent a large family of proteins implicated in many biological processes including ribosome biogenesis, splicing, translation and mRNA degradation. However, these proteins have little substrate specificity, making inhibition of selected helicases a challenging problem. The prototypical DEAD box RNA helicase, eIF4A, works in conjunction with other translation factors to prepare mRNA templates for ribosome recruitment during translation initiation. Herein, we provide insight into the selectivity of a small molecule inhibitor of eIF4A, hippuristanol. This coral-derived natural product binds to amino acids adjacent to, and overlapping with, two conserved motifs present in the carboxy-terminal domain of eIF4A. Mutagenesis of amino acids within this region allowed us to alter the hippuristanol-sensitivity of eIF4A and undertake structure/function studies. Our results provide an understanding into how selective targeting of RNA helicases for pharmacological intervention can be achieved.
Resumo:
BACKGROUND: The aim of this study was to evaluate the effect of CD4+ T-cell counts and other characteristics of HIV-infected individuals on hepatitis C virus (HCV) RNA levels. METHODS: All HIV-HCV-coinfected Swiss HIV Cohort Study participants with available HCV RNA levels and concurrent CD4+ T-cell counts before starting HCV therapy were included. Potential predictors of HCV RNA levels were assessed by multivariate censored linear regression models that adjust for censored values. RESULTS: The study included 1,031 individuals. Low current and nadir CD4+ T-cell counts were significantly associated with higher HCV RNA levels (P = 0.004 and 0.001, respectively). In individuals with current CD4+ T-cell counts < 200/microl, median HCV RNA levels (6.22 log10 IU/ml) were +0.14 and +0.24 log10 IU/ml higher than those with CD4+ T-cell counts of 200-500/microl and > 500/microl. Based on nadir CD4+ T-cell counts, median HCV RNA levels (6.12 log10 IU/ml) in individuals with < 200/microl CD4+ T-cells were +0.06 and +0.44 log10 IU/ml higher than those with nadir T-cell counts of 200-500/microl and > 500/microl. Median HCV RNA levels were also significantly associated with HCV genotype: lower values were associated with genotype 4 and higher values with genotype 2, as compared with genotype 1. Additional significant predictors of lower HCV RNA levels were female gender and HIV transmission through male homosexual contacts. In multivariate analyses, only CD4+ T-cell counts and HCV genotype remained significant predictors of HCV RNA levels. Conclusions: Higher HCV RNA levels were associated with CD4+ T-cell depletion. This finding is in line with the crucial role of CD4+ T-cells in the control of HCV infection.
Resumo:
OBJECTIVE: To determine the effects of cognitive-behavioral stress management (CBSM) training on clinical and psychosocial markers in HIV-infected persons. METHODS: A randomized controlled trial in four HIV outpatient clinics of 104 HIV-infected persons taking combination antiretroviral therapy (cART), measuring HIV-1 surrogate markers, adherence to therapy and well-being 12 months after 12 group sessions of 2 h CBSM training. RESULTS: Intent-to-treat analyses showed no effects on HIV-1 surrogate markers in the CBSM group compared with the control group: HIV-1 RNA < 50 copies/ml in 81.1% [95% confidence interval (CI), 68.0-90.6] and 74.5% (95% CI, 60.4-85.7), respectively (P = 0.34), and mean CD4 cell change from baseline of 53.0 cells/microl (95% CI, 4.1-101.8) and 15.5 cells/microl (95% CI, -34.3 to 65.4), respectively (P = 0.29). Self-reported adherence to therapy did not differ between groups at baseline (P = 0.53) or at 12 month's post-intervention (P = 0.47). Significant benefits of CBSM over no intervention were observed in mean change of quality of life scores: physical health 2.9 (95% CI, 0.7-5.1) and -0.2 (95% CI, -2.1 to 1.8), respectively (P = 0.05); mental health 4.8 (95% CI, 1.8-7.3) and -0.5 (95% CI, -3.3 to 2.2) (P = 0.02); anxiety -2.1 (95% CI, -3.6 to -1.0) and 0.3 (95% CI, -0.7 to 1.4), respectively (P = 0.002); and depression -2.1 (95% CI, -3.2 to -0.9) and 0.02 (95% CI, -1.0 to 1.1), respectively (P = 0.001). Alleviation of depression and anxiety symptoms were most pronounced among participants with high psychological distress at baseline. CONCLUSION: CBSM training of HIV-infected persons taking on cART does not improve clinical outcome but has lasting effects on quality of life and psychological well-being.
Resumo:
Skeletal muscle atrophy and fatty infiltration develop after tendon tearing. The extent of atrophy serves as one prognostic factor for the outcome of surgical repair of rotator cuff tendon tears. We asked whether mRNA of genes involved in regulation of degradative processes leading to muscle atrophy, ie, FOXOs, MSTN, calpains, cathepsins, and transcripts of the ubiquitin-proteasome pathway, are overexpressed in the supraspinatus muscle in patients with and without rotator cuff tears. We evaluated biopsy specimens collected during surgery of 53 consecutive patients with different sizes of rotator cuff tendon tears and six without tears. The levels of corresponding gene transcripts in total RNA extracts were assessed by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Supraspinatus muscle atrophy was assessed by MRI. The area of muscle tissue (or atrophy), decreased (increased) with increasing tendon tear size. The transcripts of CAPN1, UBE2B, and UBE3A were upregulated more than twofold in massive rotator cuff tears as opposed to smaller tears or patients without tears. These atrophy gene products may be involved in cellular processes that impair functional recovery of affected muscles after surgical rotator cuff repair. However, the damaging effects of gene products in their respective proteolytic processes on muscle structures and proteins remains to be investigated.
Resumo:
Recently, a novel group of fungal peroxidases, known as the aromatic peroxygenases (APO), has been discovered. Members of these extracellular biocatalysts produced by agaric basidiomycetes such as Agrocybe aegerita or Coprinellus radians catalyze reactions--for example, the peroxygenation of naphthalene, toluene, dibenzothiophene, or pyridine--which are actually attributed to cytochrome P450 monooxygenases. Here, for the first time, genetic information is presented on this new group of peroxide-consuming enzymes. The gene of A. aegerita peroxygenase (apo1) was identified on the level of messenger RNA and genomic DNA. The gene sequence was affirmed by peptide sequences obtained through an Edman degradation and de novo peptide sequencing of the purified enzyme. Quantitative real-time reverse transcriptase polymerase chain reaction demonstrated that the course of enzyme activity correlated well with that of mRNA signals for apo1 in A. aegerita. The full-length sequences of A. aegerita peroxygenase as well as a partial sequence of C. radians peroxygenase confirmed the enzymes' affiliation to the heme-thiolate proteins. The sequences revealed no homology to classic peroxidases, cytochrome P450 enzymes, and only little homology (<30%) to fungal chloroperoxidase produced by the ascomycete Caldariomyces fumago (and this only in the N-terminal part of the protein comprising the heme-binding region and part of the distal heme pocket). This fact reinforces the novelty of APO proteins. On the other hand, homology retrievals in genetic databases resulted in the identification of various APO homologous genes and transcripts, particularly among the agaric fungi, indicating APO's widespread occurrence in the fungal kingdom.
Resumo:
Quantitative reverse transcriptase real-time PCR (QRT-PCR) is a robust method to quantitate RNA abundance. The procedure is highly sensitive and reproducible as long as the initial RNA is intact. However, breaks in the RNA due to chemical or enzymatic cleavage may reduce the number of RNA molecules that contain intact amplicons. As a consequence, the number of molecules available for amplification decreases. We determined the relation between RNA fragmentation and threshold values (Ct values) in subsequent QRT-PCR for four genes in an experimental model of intact and partially hydrolyzed RNA derived from a cell line and we describe the relation between RNA integrity, amplicon size and Ct values in this biologically homogenous system. We demonstrate that degradation-related shifts of Ct values can be compensated by calculating delta Ct values between test genes and the mean values of several control genes. These delta Ct values are less sensitive to fragmentation of the RNA and are unaffected by varying amounts of input RNA. The feasibility of the procedure was demonstrated by comparing Ct values from a larger panel of genes in intact and in partially degraded RNA. We compared Ct values from intact RNA derived from well-preserved tumor material and from fragmented RNA derived from formalin-fixed, paraffin-embedded (FFPE) samples of the same tumors. We demonstrate that the relative abundance of gene expression can be based on FFPE material even when the amount of RNA in the sample and the extent of fragmentation are not known.
Resumo:
We improved, evaluated, and used Sanger sequencing for quantification of single nucleotide polymorphism (SNP) variants in transcripts and gDNA samples. This improved assay resulted in highly reproducible relative allele frequencies (e.g., for a heterozygous gDNA 50.0+/-1.4%, and for a missense mutation-bearing transcript 46.9+/-3.7%) with a lower detection limit of 3-9%. It provided excellent accuracy and linear correlation between expected and observed relative allele frequencies. This sequencing assay, which can also be used for the quantification of copy number variations (CNVs), methylations, mosaicisms, and DNA pools, enabled us to analyze transcripts of the FBN1 gene in fibroblasts and blood samples of patients with suspected Marfan syndrome not only qualitatively but also quantitatively. We report a total of 18 novel and 19 known FBN1 sequence variants leading to a premature termination codon (PTC), 26 of which we analyzed by quantitative sequencing both at gDNA and cDNA levels. The relative amounts of PTC-containing FBN1 transcripts in fresh and PAXgene-stabilized blood samples were significantly higher (33.0+/-3.9% to 80.0+/-7.2%) than those detected in affected fibroblasts with inhibition of nonsense-mediated mRNA decay (NMD) (11.0+/-2.1% to 25.0+/-1.8%), whereas in fibroblasts without NMD inhibition no mutant alleles could be detected. These results provide evidence for incomplete NMD in leukocytes and have particular importance for RNA-based analyses not only in FBN1 but also in other genes.