65 resultados para Regulation-based classification system
Resumo:
In this chapter a low-cost surgical navigation solution for periacetabular osteotomy (PAO) surgery is described. Two commercial inertial measurement units (IMU, Xsens Technologies, The Netherlands), are attached to a patient’s pelvis and to the acetabular fragment, respectively. Registration of the patient with a pre-operatively acquired computer model is done by recording the orientation of the patient’s anterior pelvic plane (APP) using one IMU. A custom-designed device is used to record the orientation of the APP in the reference coordinate system of the IMU. After registration, the two sensors are mounted to the patient’s pelvis and acetabular fragment, respectively. Once the initial position is recorded, the orientation is measured and displayed on a computer screen. A patient-specific computer model generated from a pre-operatively acquired computed tomography (CT) scan is used to visualize the updated orientation of the acetabular fragment. Experiments with plastic bones (7 hip joints) performed in an operating room comparing a previously developed optical navigation system with our inertial-based navigation system showed no statistical difference on the measurement of acetabular component reorientation (anteversion and inclination). In six out of seven hip joints the mean absolute difference was below five degrees for both anteversion and inclination.
Resumo:
PURPOSE To evaluate a low-cost, inertial sensor-based surgical navigation solution for periacetabular osteotomy (PAO) surgery without the line-of-sight impediment. METHODS Two commercial inertial measurement units (IMU, Xsens Technologies, The Netherlands), are attached to a patient's pelvis and to the acetabular fragment, respectively. Registration of the patient with a pre-operatively acquired computer model is done by recording the orientation of the patient's anterior pelvic plane (APP) using one IMU. A custom-designed device is used to record the orientation of the APP in the reference coordinate system of the IMU. After registration, the two sensors are mounted to the patient's pelvis and acetabular fragment, respectively. Once the initial position is recorded, the orientation is measured and displayed on a computer screen. A patient-specific computer model generated from a pre-operatively acquired computed tomography scan is used to visualize the updated orientation of the acetabular fragment. RESULTS Experiments with plastic bones (eight hip joints) performed in an operating room comparing a previously developed optical navigation system with our inertial-based navigation system showed no statistically significant difference on the measurement of acetabular component reorientation. In all eight hip joints the mean absolute difference was below four degrees. CONCLUSION Using two commercially available inertial measurement units we show that it is possible to accurately measure the orientation (inclination and anteversion) of the acetabular fragment during PAO surgery and therefore to successfully eliminate the line-of-sight impediment that optical navigation systems have.
Resumo:
The new classification system of uterine anomalies from the European Society of Human Reproduction and Embryology and the European Society for Gynaecological Endoscopy defines T-shaped and tubular-shaped infantilis uteri as 'dysmorphic'. Such malformations have been proven to be associated with poor reproductive performance. A prospective observational study was conducted with 30 infertile women with dysmorphic uterus who underwent the novel Hysteroscopic Outpatient Metroplasty to Expand Dysmorphic Uteri (HOME-DU ) technique. Incisions are made on the uterine walls with a 5 Fr bipolar electrode. The procedure was conducted in outpatients under conscious sedation, using a 5-mm office hysteroscope. The technique was successful in all cases without complications. A net increase of uterine volume was found, as measured at hysteroscopy and three-dimensional transvaginal ultrasound (P < 0.001). Uterine morphology improved in all patients but one. At mean follow-up of 15 months, clinical pregnancy rate was 57% and term delivery rate 65%. These early data support HOME-DU as safe and effective in expanding the volume and normalizing the appearance of the uterine cavity of dysmorphic uteri. Although the cohort was small, pregnancy and live births outcomes were favourable in this poor-prognosis group, implying desirable benefits, which should be compared with other techniques.
Resumo:
Peripheral arteriovenous malformations (AVM) remain most challenging among various congenital vascular malformations to be treated. Here we present three illustrative patients with Yakes type IIIb and type IV AVM at the plantar aspect of the foot who were successfully treated by minimally invasive embolization. The value of the Yakes AVM classification system to guide the therapeutic decision making by directing specific therapeutic procedures to specific AVM types defined by their angioarchitecture is demonstrated. Direct percutaneous AVM puncture with coiling of aneurysmal outflow vein and subsequent ethanol embolization is shown. Finally, the report illustrates that several AVM types can coexist.
Resumo:
The AEgIS experiment is an interdisciplinary collaboration between atomic, plasma and particle physicists, with the scientific goal of performing the first precision measurement of the Earth's gravitational acceleration on antimatter. The principle of the experiment is as follows: cold antihydrogen atoms are synthesized in a Penning-Malmberg trap and are Stark accelerated towards a moiré deflectometer, the classical counterpart of an atom interferometer, and annihilate on a position sensitive detector. Crucial to the success of the experiment is an antihydrogen detector that will be used to demonstrate the production of antihydrogen and also to measure the temperature of the anti-atoms and the creation of a beam. The operating requirements for the detector are very challenging: it must operate at close to 4 K inside a 1 T solenoid magnetic field and identify the annihilation of the antihydrogen atoms that are produced during the 1 μs period of antihydrogen production. Our solution—called the FACT detector—is based on a novel multi-layer scintillating fiber tracker with SiPM readout and off the shelf FPGA based readout system. This talk will present the design of the FACT detector and detail the operation of the detector in the context of the AEgIS experiment.