89 resultados para Receptor Tyrosine Kinases
Resumo:
In the human body, over 1000 different G protein-coupled receptors (GPCRs) mediate a broad spectrum of extracellular signals at the plasma membrane, transmitting vital physiological features such as pain, sight, smell, inflammation, heart rate and contractility of muscle cells. Signaling through these receptors is primarily controlled and regulated by a group of kinases, the GPCR kinases (GRKs), of which only seven are known and thus, interference with these common downstream GPCR regulators suggests a powerful therapeutic strategy. Molecular modulation of the kinases that are ubiquitously expressed in the heart has proven GRK2, and also GRK5, to be promising targets for prevention and reversal of one of the most severe pathologies in man, chronic heart failure (HF). In this article we will focus on the structural aspects of these GRKs important for their physiological and pathological regulation as well as well known and novel therapeutic approaches that target these GRKs in order to overcome the development of cardiac injury and progression of HF.
Resumo:
Convulxin, a powerful platelet activator, was isolated from Crotalus durissus terrificus venom, and 20 amino acid N-terminal sequences of both subunits were determined. These indicated that convulxin belongs to the heterodimeric C-type lectin family. Neither antibodies against GPIb nor echicetin had any effect on convulxin-induced platelet aggregation showing that, in contrast to other venom C-type lectins acting on platelets, GPIb is not involved in convulxin-induced platelet activation. In addition, partially reduced/denatured convulxin only affects collagen-induced platelet aggregation. The mechanism of convulxin-induced platelet activation was examined by platelet aggregation, detection of time-dependent tyrosine phosphorylation of platelet proteins, and binding studies with 125I-convulxin. Convulxin induces signal transduction in part like collagen, involving the time-dependent tyrosine phosphorylation of Fc receptor gamma chain, phospholipase Cgamma2, p72(SYK), c-Cbl, and p36-38. However, unlike collagen, pp125(FAK) and some other bands are not tyrosine-phosphorylated. Convulxin binds to a glycosylated 62-kDa membrane component in platelet lysate and to p62/GPVI immunoprecipitated by human anti-p62/GPVI antibodies. Convulxin subunits inhibit both aggregation and tyrosine phosphorylation in response to collagen. Piceatannol, a tyrosine kinase inhibitor with some specificity for p72(SYK), showed differential effects on collagen and convulxin-stimulated signaling. These results suggest that convulxin uses the p62/GPVI but not the alpha2beta1 part of the collagen signaling pathways to activate platelets. Occupation and clustering of p62/GPVI may activate Src family kinases phosphorylating Fc receptor gamma chain and, by a mechanism previously described in T- and B-cells, activate p72(SYK) that is critical for downstream activation of platelets.
Resumo:
Ephrins are cell surface-associated ligands for Eph receptors and are important regulators of morphogenic processes such as axon guidance and angiogenesis. Transmembrane ephrinB ligands act as "receptor-like" signaling molecules, in part mediated by tyrosine phosphorylation and by engagement with PDZ domain proteins. However, the underlying cell biology and signaling mechanisms are poorly understood. Here we show that Src family kinases (SFKs) are positive regulators of ephrinB phosphorylation and phosphotyrosine-mediated reverse signaling. EphB receptor engagement of ephrinB causes rapid recruitment of SFKs to ephrinB expression domains and transient SFK activation. With delayed kinetics, ephrinB ligands recruit the cytoplasmic PDZ domain containing protein tyrosine phosphatase PTP-BL and are dephosphorylated. Our data suggest the presence of a switch mechanism that allows a shift from phosphotyrosine/SFK-dependent signaling to PDZ-dependent signaling.
Resumo:
AIMS/HYPOTHESIS: Inhibition of the signalling function of the human insulin receptor (HIR) is one of the principle mechanisms which induce cellular insulin resistance. It is speculated that serine residues in the insulin receptor beta-subunit are involved in receptor inhibition either as inhibitory phosphorylation sites or as part of receptor domains which bind inhibitory proteins or tyrosine phosphatases. As reported earlier we prepared 16 serine to alanine point mutations of the HIR and found that serine to alanine mutants HIR-994 and HIR-1023/25 showed increased tyrosine autophosphorylation when expressed in human embryonic kidney (HEK) 293 cells. In this study we examined whether these mutant receptors have a different susceptibility to inhibition by serine kinases or an altered tyrosine kinase activity. METHODS: Tyrosine kinase assay and transfection studies. RESULTS: In an in vitro kinase assay using IRS-1 as a substrate we could detect a higher intrinsic tyrosine kinase activity of both receptor constructs. Additionally, a higher capacity to phosphorylate the adapter protein Shc in intact cells was seen. To test the inhibition by serine kinases, the receptor constructs were expressed in HEK 293 cells together with IRS-1 and protein kinase C isoforms beta2 and theta. Phorbol ester stimulation of these cells reduced wild-type receptor autophosphorylation to 58 % or 55 % of the insulin simulated state, respectively. This inhibitory effect was not observed with HIR-994 and HIR-1023/25, although all other tested HIR mutants showed similar inhibition induced by protein kinase C. CONCLUSION/INTERPRETATION: The data suggest that the HIR-domain which contains the serine residues 994 and 1023/25 is important for the inhibitory effect of protein kinase C isoforms beta2 and theta on insulin receptor autophosphorylation.
Resumo:
AIMS Tumour buds in colorectal cancer represent an aggressive subgroup of non-proliferating and non-apoptotic tumour cells. We hypothesize that the survival of tumour buds is dependent upon anoikis resistance. The role of tyrosine kinase receptor B (TrkB), a promoter of epithelial-mesenchymal transition and anoikis resistance, in facilitating budding was investigated. METHODS AND RESULTS Tyrosine kinase receptor B immunohistochemistry was performed on a multiple-punch tissue microarray of 211 colorectal cancer resections. Membranous/cytoplasmic and nuclear expression was evaluated in tumour and buds. Tumour budding was assessed on corresponding whole tissue slides. Relationship to Ki-67 and caspase-3 was investigated. Analysis of Kirsten Ras (KRAS), proto-oncogene B-RAF (BRAF) and cytosine-phosphate-guanosine island methylator phenotype (CIMP) was performed. Membranous/cytoplasmic and nuclear TrkB were strongly, inversely correlated (P < 0.0001; r = -0.41). Membranous/cytoplasmic TrkB was overexpressed in buds compared to the main tumour body (P < 0.0001), associated with larger tumours (P = 0.0236), high-grade budding (P = 0.0011) and KRAS mutation (P = 0.0008). Nuclear TrkB was absent in buds (P <0.0001) and in high-grade budding cancers (P =0.0073). Among patients with membranous/cytoplasmic TrkB-positive buds, high tumour membranous/cytoplasmic TrkB expression was a significant, independent adverse prognostic factor [P = 0.033; 1.79, 95% confidence interval (CI) 1.05-3.05]. Inverse correlations between membranous/cytoplasmic TrkB and Ki-67 (r = -0.41; P < 0.0001) and caspase-3 (r =-0.19; P < 0.05) were observed. CONCLUSIONS Membranous/cytoplasmic TrkB may promote an epithelial-mesenchymal transition (EMT)-like phenotype with high-grade budding and maintain viability of buds themselves.
Resumo:
FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs.
Resumo:
FGFRL1 (fibroblast growth factor receptor like 1) is the most recently discovered member of the FGFR family. It contains three extracellular Ig-like domains similar to the classical FGFRs, but it lacks the protein tyrosine kinase domain and instead contains a short intracellular tail with a peculiar histidine-rich motif. The gene for FGFRL1 is found in all metazoans from sea anemone to mammals. FGFRL1 binds to FGF ligands and heparin with high affinity. It exerts a negative effect on cell proliferation, but a positive effect on cell differentiation. Mice with a targeted deletion of the Fgfrl1 gene die perinatally due to alterations in their diaphragm. These mice also show bilateral kidney agenesis, suggesting an essential role for Fgfrl1 in kidney development. A human patient with a frameshift mutation exhibits craniosynostosis, arguing for an additional role of FGFRL1 during bone formation. FGFRL1 contributes to the complexity of the FGF signaling system.
Resumo:
Activation of prosurvival kinases and subsequent nitric oxide (NO) production by certain G protein-coupled receptors (GPCRs) protects myocardium in ischemia/reperfusion injury (I/R) models. GPCR signaling pathways are regulated by GPCR kinases (GRKs), and GRK2 has been shown to be a critical molecule in normal and pathological cardiac function.
Resumo:
Peroxisome proliferator-activated receptor ? (PPAR?) is a transcription factor that promotes differentiation and cell survival in the stomach. PPAR? upregulates and interacts with caveolin-1 (Cav1), a scaffold protein of Ras/mitogen-activated protein kinases (MAPKs). The cytoplasmic-to-nuclear localization of PPAR? is altered in gastric cancer (GC) patients, suggesting a so-far-unknown role for Cav1 in spatial regulation of PPAR? signaling. We show here that loss of Cav1 accelerated proliferation of normal stomach and GC cells in vitro and in vivo. Downregulation of Cav1 increased Ras/MAPK-dependent phosphorylation of serine 84 in PPAR? and enhanced nuclear translocation and ligand-independent transcription of PPAR? target genes. In contrast, Cav1 overexpression sequestered PPAR? in the cytosol through interaction of the Cav1 scaffolding domain (CSD) with a conserved hydrophobic motif in helix 7 of PPAR?'s ligand-binding domain. Cav1 cooperated with the endogenous Ras/MAPK inhibitor docking protein 1 (Dok1) to promote the ligand-dependent transcriptional activity of PPAR? and to inhibit cell proliferation. Ligand-activated PPAR? also reduced tumor growth and upregulated the Ras/MAPK inhibitors Cav1 and Dok1 in a murine model of GC. These results suggest a novel mechanism of PPAR? regulation by which Ras/MAPK inhibitors act as scaffold proteins that sequester and sensitize PPAR? to ligands, limiting proliferation of gastric epithelial cells.
Resumo:
W5.43(194), a conserved tryptophan residue among G-protein coupled receptors (GPCRs) and cannabinoid receptors (CB), was examined in the present report for its significance in CB2 receptor ligand binding and adenylyl cyclase (AC) activity. Computer modeling postulates that this site in CB2 may be involved in the affinity of WIN55212-2 and SR144528 through aromatic contacts. In the present study, we reported that a CB2 receptor mutant, W5.43(194)Y, which had a tyrosine (Y) substitution for tryptophan (W), retained the binding affinity for CB agonist CP55940, but reduced binding affinity for CB2 agonist WIN55212-2 and inverse agonist SR144528 by 8-fold and 5-fold, respectively; the CB2 W5.43(194)F and W5.43(194)A mutations significantly affect the binding activities of CP55940, WIN55212-2 and SR144528. Furthermore, we found that agonist-mediated inhibition of the forskolin-induced cAMP production was dramatically diminished in the CB2 mutant W5.43(194)Y, whereas W5.43(194)F and W5.43(194)A mutants resulted in complete elimination of downstream signaling, suggesting that W5.43(194) was essential for the full activation of CB2. These results indicate that both aromatic interaction and hydrogen bonding are involved in ligand binding for the residue W5.43(194), and the mutations of this tryptophan site may affect the conformation of the ligand binding pocket and therefore control the active conformation of the wild type CB2 receptor. W5.43(194)Y/F/A mutations also displayed noticeable enhancement of the constitutive activation probably attributed to the receptor conformational changes resulted from the mutations.
Resumo:
The cannabinoid G protein-coupled receptors (GPCRs) CB₁ and CB₂ are expressed in different peripheral cells. Localization of GPCRs in the cell membrane determines signaling via G protein pathways. Here we show that unlike in transfected cells, CB receptors in cell lines and primary human cells are not internalized upon agonist interaction, but move between cytoplasm and cell membranes by ligand-independent trafficking mechanisms. Even though CB receptors are expressed in many cells of peripheral origin they are not always localized in the cell membrane and in most cancer cell lines the ratios between CB₁ and CB₂ receptor gene and surface expression vary significantly. In contrast, CB receptor cell surface expression in HL60 cells is subject to significant oscillations and CB₂ receptors form oligomers and heterodimers with CB₁ receptors, showing synchronized surface expression, localization and trafficking. We show that hydrogen peroxide and other nonspecific protein tyrosine phosphatase inhibitors (TPIs) such as phenylarsine oxide trigger both CB₂ receptor internalization and externalization, depending on receptor localization. Phorbol ester-mediated internalization of CB receptors can be inhibited via this switch. In primary human immune cells hydrogen peroxide and other TPIs lead to a robust internalization of CB receptors in monocytes and an externalization in T cells. This study describes, for the first time, the dynamic nature of CB receptor trafficking in the context of a biochemical switch, which may have implications for studies on the cell-type specific effects of cannabinoids and our understanding of the regulation of CB receptor cell surface expression.
Resumo:
We have used a recombinant mouse pre-B cell line (TonB210.1, expressing Bcr/Abl under the control of an inducible promoter) and several human leukemia cell lines to study the effect of high tyrosine kinase activity on G protein-coupled receptor (GPCR) agonist-stimulated cellular Ca(2+) release and store-operated Ca(2+) entry (SOCE). After induction of Bcr/Abl expression, GPCR-linked SOCE increased. The effect was reverted in the presence of the specific Abl inhibitor imatinib (1microM) and the Src inhibitor PP2 (10microM). In leukemic cell lines constitutively expressing high tyrosine kinase activity, Ca(2+) transients were reduced by imatinib and/or PP2. Ca(2+) transients were enhanced by specific inhibitors of PKC subtypes and this effect was amplified by tyrosine kinase inhibition in Bcr/Abl expressing TonB210.1 and K562 cells. Under all conditions Ca(2+) transients were essentially blocked by the PKC activator PMA. In Bcr/Abl expressing (but not in native) TonB210.1 cells, tyrosine kinase inhibitors enhanced PKCalpha catalytic activity and PKCalpha co-immunoprecipitated with Bcr/Abl. Unlike native TonB210.1 cells, Bcr/Abl expressing cells showed a high rate of cell death if Ca(2+) influx was reduced by complexing extracellular Ca(2+) with BAPTA. Our data suggest that tonic inhibition of PKC represents a mechanism by which high tyrosine kinase activity can enhance cellular Ca(2+) transients and thus exert profound effects on the proliferation, apoptosis and chemotaxis of leukemic cells.
Resumo:
Aggretin, a potent platelet activator, was isolated from Calloselasma rhodostoma venom, and 30-amino acid N-terminal sequences of both subunits were determined. Aggretin belongs to the heterodimeric snake C-type lectin family and is thought to activate platelets by binding to platelet glycoprotein alpha(2)beta(1). We now show that binding to glycoprotein (GP) Ib is also required. Aggretin-induced platelet activation was inhibited by a monoclonal antibody to GPIb as well as by antibodies to alpha(2)beta(1). Binding of both of these platelet receptors to aggretin was confirmed by affinity chromatography. No binding of other major platelet membrane glycoproteins, in particular GPVI, to aggretin was detected. Aggretin also activates platelets from Fc receptor gamma chain (Fcgamma)-deficient mice to a greater extent than those from normal control mice, showing that it does not use the GPVI/Fcgamma pathway. Platelets from Fcgamma-deficient mice expressed fibrinogen receptors normally in response to collagen, although they did not aggregate, indicating that these platelets may partly compensate via other receptors including alpha(2)beta(1) or GPIb for the lack of the Fcgamma pathway. Signaling by aggretin involves a dose-dependent lag phase followed by rapid tyrosine phosphorylation of a number of proteins. Among these are p72(SYK), p125(FAK), and PLCgamma2, whereas, in comparison with collagen and convulxin, the Fcgamma subunit neither is phosphorylated nor coprecipitates with p72(SYK). This supports an independent, GPIb- and integrin-based pathway for activation of p72(SYK) not involving the Fcgamma receptor.
Resumo:
We have cloned the platelet collagen receptor glycoprotein (GP) VI from a human bone marrow cDNA library using rapid amplification of cDNA ends with platelet mRNA to complete the 5' end sequence. GPVI was isolated from platelets using affinity chromatography on the snake C-type lectin, convulxin, as a critical step. Internal peptide sequences were obtained, and degenerate primers were designed to amplify a fragment of the GPVI cDNA, which was then used as a probe to screen the library. Purified GPVI, as well as Fab fragments of polyclonal antibodies made against the receptor, inhibited collagen-induced platelet aggregation. The GPVI receptor cDNA has an open reading frame of 1017 base pairs coding for a protein of 339 amino acids including a putative 23-amino acid signal sequence and a 19-amino acid transmembrane domain between residues 247 and 265. GPVI belongs to the immunoglobulin superfamily, and its sequence is closely related to FcalphaR and to the natural killer receptors. Its extracellular chain has two Ig-C2-like domains formed by disulfide bridges. An arginine residue is found in position 3 of the transmembrane portion, which should permit association with Fcgamma and its immunoreceptor tyrosine-based activation motif via a salt bridge. With 51 amino acids, the cytoplasmic tail is relatively long and shows little homology to the C-terminal part of the other family members. The ability of the cloned GPVI cDNA to code for a functional platelet collagen receptor was demonstrated in the megakaryocytic cell line Dami. Dami cells transfected with GPVI cDNA mobilized intracellular Ca(2+) in response to collagen, unlike the nontransfected or mock transfected Dami cells, which do not respond to collagen.