65 resultados para Radiofrequency Neurotomy
Resumo:
OBJECTIVES Levels of inflammatory biomarkers associate with changes of coronary atheroma burden in statin-treated patients with stable coronary artery disease. This study sought to determine changes of plaque composition in vivo in relation to high-sensitivity C-reactive protein (hs-CRP) levels in patients with ST-elevation myocardial infarction (STEMI) receiving high-intensity statin therapy. METHODS The IBIS-4 study performed serial (baseline and 13-month), 2-vessel intravascular ultrasound (IVUS) and radiofrequency-IVUS of the non-infarct-related arteries in patients with STEMI treated with high-intensity statin therapy. The present analysis included 44 patients (80 arteries) with serial measurements of hs-CRP. RESULTS At follow-up, median low-density lipoprotein cholesterol (LDL-C) levels decreased from 126 to 77 mg/dl, HDL-C increased from 44 to 47 mg/dl, and hs-CRP decreased from 1.6 to 0.7 mg/L. Regression of percent atheroma volume (-0.99%, 95% CI -1.84 to -0.14, p = 0.024) was accompanied by reduction of percent fibro-fatty (p = 0.04) and fibrous tissue (p < 0.001), and increase in percent necrotic core (p = 0.006) and dense calcium (p < 0.001). Follow-up levels of hs-CRP, but not LDL-C, correlated with changes in percent necrotic core (p = 0.001) and inversely with percent fibrous tissue volume (p = 0.008). Similarly, baseline-to-follow-up change of hs-CRP correlated with the change in percent necrotic core volume (p = 0.02). CONCLUSIONS In STEMI patients receiving high-intensity statin therapy, stabilization of VH-IVUS-defined necrotic core was confined to patients with lowest on-treatment levels and greatest reduction of hs-CRP. Elevated CRP levels at follow-up may identify progression of high-risk coronary plaque composition despite intensive statin therapy and overall regression of atheroma volume.
Resumo:
PURPOSE To reliably determine the amplitude of the transmit radiofrequency ( B1+) field in moving organs like the liver and heart, where most current techniques are usually not feasible. METHODS B1+ field measurement based on the Bloch-Siegert shift induced by a pair of Fermi pulses in a double-triggered modified Point RESolved Spectroscopy (PRESS) sequence with motion-compensated crusher gradients has been developed. Performance of the sequence was tested in moving phantoms and in muscle, liver, and heart of six healthy volunteers each, using different arrangements of transmit/receive coils. RESULTS B1+ determination in a moving phantom was almost independent of type and amplitude of the motion and agreed well with theory. In vivo, repeated measurements led to very small coefficients of variance (CV) if the amplitude of the Fermi pulse was chosen above an appropriate level (CV in muscle 0.6%, liver 1.6%, heart 2.3% with moderate amplitude of the Fermi pulses and 1.2% with stronger Fermi pulses). CONCLUSION The proposed sequence shows a very robust determination of B1+ in a single voxel even under challenging conditions (transmission with a surface coil or measurements in the heart without breath-hold). Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Purpose To investigate whether nonhemodynamic resonant saturation effects can be detected in patients with focal epilepsy by using a phase-cycled stimulus-induced rotary saturation (PC-SIRS) approach with spin-lock (SL) preparation and whether they colocalize with the seizure onset zone and surface interictal epileptiform discharges (IED). Materials and Methods The study was approved by the local ethics committee, and all subjects gave written informed consent. Eight patients with focal epilepsy undergoing presurgical surface and intracranial electroencephalography (EEG) underwent magnetic resonance (MR) imaging at 3 T with a whole-brain PC-SIRS imaging sequence with alternating SL-on and SL-off and two-dimensional echo-planar readout. The power of the SL radiofrequency pulse was set to 120 Hz to sensitize the sequence to high gamma oscillations present in epileptogenic tissue. Phase cycling was applied to capture distributed current orientations. Voxel-wise subtraction of SL-off from SL-on images enabled the separation of T2* effects from rotary saturation effects. The topography of PC-SIRS effects was compared with the seizure onset zone at intracranial EEG and with surface IED-related potentials. Bayesian statistics were used to test whether prior PC-SIRS information could improve IED source reconstruction. Results Nonhemodynamic resonant saturation effects ipsilateral to the seizure onset zone were detected in six of eight patients (concordance rate, 0.75; 95% confidence interval: 0.40, 0.94) by means of the PC-SIRS technique. They were concordant with IED surface negativity in seven of eight patients (0.88; 95% confidence interval: 0.51, 1.00). Including PC-SIRS as prior information improved the evidence of the standard EEG source models compared with the use of uninformed reconstructions (exceedance probability, 0.77 vs 0.12; Wilcoxon test of model evidence, P < .05). Nonhemodynamic resonant saturation effects resolved in patients with favorable postsurgical outcomes, but persisted in patients with postsurgical seizure recurrence. Conclusion Nonhemodynamic resonant saturation effects are detectable during interictal periods with the PC-SIRS approach in patients with epilepsy. The method may be useful for MR imaging-based detection of neuronal currents in a clinical environment. (©) RSNA, 2016 Online supplemental material is available for this article.
Resumo:
BACKGROUND Mapping to identify scar-related ventricular tachycardia re-entry circuits during sinus rhythm focuses on sites with abnormal electrograms or pace-mapping findings of QRS morphology and long stimulus to QRS intervals. We hypothesized that (1) these methods do not necessarily identify the same sites and (2) some electrograms are far-field potentials that can be recognized by pacing. METHODS AND RESULTS From 12 patients with coronary disease and recurrent ventricular tachycardia undergoing catheter ablation, we retrospectively analyzed electrograms and pacing at 546 separate low bipolar voltage (<1.5 mV) sites. Electrograms were characterized as showing evidence of slow conduction if late potentials (56%) or fractionated potentials (76%) were present. Neither was present at (13%) sites. Pacing from the ablation catheter captured 70% of all electrograms. Higher bipolar voltage and fractionation were independent predictors for pace capture. There was a linear correlation between the stimulus to QRS duration during pacing and the lateness of a capturing electrogram (P<0.001), but electrogram and pacing markers of slow conduction were discordant at 40% of sites. Sites with far-field potentials, defined as those that remained visible and not captured by pacing stimuli, were identified at 48% of all pacing sites, especially in areas of low bipolar voltage and late potentials. Initial radiofrequency energy application rendered 74% of targeted sites electrically unexcitable. CONCLUSIONS Far-field potentials are common in scar areas. Combining analysis of electrogram characteristics and assessment of pace capture may refine identification of substrate targets for radiofrequency ablation.
Resumo:
BACKGROUND Long-term outcomes following ventricular tachycardia (VT) ablation are sparsely described. OBJECTIVES To describe long term prognosis following VT ablation in patients with no structural heart disease (no SHD), ischemic (ICM) and non-ischemic cardiomyopathy (NICM). METHODS Consecutive patients (n=695; no SHD 98, ICM 358, NICM 239 patients) ablated for sustained VT were followed for a median of 6 years. Acute procedural parameters (complete success [non-inducibility of any VT]) and outcomes after multiple procedures were reported. RESULTS Compared with patients with no SHD or NICM, ICM patients were the oldest, had more males, lowest left ventricular ejection fraction (LVEF), highest drug failures, VT storms and number of inducible VTs. Complete procedure success was highest in no SHD, compared ICM and NICM patients (79%, 56%, 60% respectively, P<0.001). At 6 years, ventricular arrhythmia (VA)-free survival was highest in no SHD (77%) than ICM (54%) and NICM (38%, P<0.001) and overall survival was lowest in ICM (48%), followed by NICM (74%) and no SHD patients (100%, P<0.001). Age, LVEF, presence of SHD, acute procedural success (non-inducibility of any VT), major complications, need for non-radiofrequency ablation modalities, and VA recurrence were independently associated with all cause mortality. CONCLUSIONS Long term follow up following VT ablation shows excellent prognosis in the absence of SHD, highest VA recurrence and transplantation in NICM and highest mortality in patients with ICM. The extremely low mortality for those without SHD suggests that VT in this population is very rarely an initial presentation of a myopathic process.