72 resultados para Postural alterations
Resumo:
BACKGROUND Endothelial glycocalyx participates in the maintenance of vascular integrity, and its perturbations cause capillary leakage, loss of vascular responsiveness, and enhanced adhesion of leukocytes and platelets. We hypothesized that marked shedding of the glycocalyx core protein, syndecan-1, occurs in end-stage liver disease (ESLD) and that it increases during orthotopic liver transplantation (OLT). We further evaluated the effects of general anesthesia on glycocalyx shedding and its association with acute kidney injury (AKI) after OLT. PATIENTS AND METHODS Thirty consecutive liver transplant recipients were enrolled in this prospective study. Ten healthy volunteers served as a control. Acute kidney injury was defined by Acute Kidney Injury Network criteria. RESULTS Plasma syndecan-1 was significantly higher in ESLD patients than in healthy volunteers (74.3 ± 59.9 vs 10.7 ± 9.4 ng/mL), and it further increased significantly after reperfusion (74.3 ± 59.9 vs 312.6 ± 114.8 ng/mL). The type of general anesthesia had no significant effect on syndecan-1. Syndecan-1 was significantly higher during the entire study in patients with posttransplant AKI stage 2 or 3 compared to patients with AKI stage 0 or 1. The area under the curve of the receiver operating characteristics curve of syndecane-1 to predict AKI stage 2 or 3 within 48 hours after reperfusion was 0.76 (95% confidence interval, 0.57-0.89, P = 0.005). CONCLUSIONS Patients with ESLD suffer from glycocalyx alterations, and ischemia-reperfusion injury during OLT further exacerbates its damage. Despite a higher incidence of AKI in patients with elevated syndecan-1, it is not helpful to predict de novo AKI. Volatile anesthetics did not attenuate glycocalyx shedding in human OLT.
Resumo:
Slip, trip, and fall injuries are frequent among health care workers. Stochastic resonance whole-body vibration training was tested to improve postural control. Participants included 124 employees of a Swiss university hospital. The randomized controlled trial included an experimental group given 8 weeks of training and a control group with no intervention. In both groups, postural control was assessed as mediolateral sway on a force plate before and after the 8-week trial. Mediolateral sway was significantly decreased by stochastic resonance whole-body vibration training in the experimental group but not in the control group that received no training (p < .05). Stochastic resonance whole-body vibration training is an option in the primary prevention of balance-related injury at work.
Resumo:
Introduction: Schizophrenia patients frequently suffer from complex motor abnormalities including fine and gross motor disturbances, abnormal involuntary movements, neurological soft signs and parkinsonism. These symptoms occur early in the course of the disease, continue in chronic patients and may deteriorate with antipsychotic medication. Furthermore gesture performance is impaired in patients, including the pantomime of tool use. Whether schizophrenia patients would show difficulties of actual tool use has not yet been investigated. Human tool use is complex and relies on a network of distinct and distant brain areas. We therefore aim to test if schizophrenia patients had difficulties in tool use and to assess associations with structural brain imaging using voxel based morphometry (VBM) and tract based spatial statistics (TBSS). Methode: In total, 44 patients with schizophrenia (DSM-5 criteria; 59% men, mean age 38) underwent structural MR imaging and performed the Tool-Use test. The test examines the use of a scoop and a hammer in three conditions: pantomime (without the tool), demonstration (with the tool) and actual use (with a recipient object). T1-weighted images were processed using SPM8 and DTI-data using FSL TBSS routines. To assess structural alterations of impaired tool use we first compared gray matter (GM) volume in VBM and white matter (WM) integrity in TBSS data of patients with and without difficulties of actual tool use. Next we explored correlations of Tool use scores and VBM and TBSS data. Group comparisons were family wise error corrected for multiple tests. Correlations were uncorrected (p < 0.001) with a minimum cluster threshold of 17 voxels (equivalent to a map-wise false positive rate of alpha < 0.0001 using a Monte Carlo procedure). Results: Tool use was impaired in schizophrenia (43.2% pantomime, 11.6% demonstration, 11.6% use). Impairment was related to reduced GM volume and WM integrity. Whole brain analyses detected an effect in the SMA in group analysis. Correlations of tool use scores and brain structure revealed alterations in brain areas of the dorso-dorsal pathway (superior occipital gyrus, superior parietal lobule, and dorsal premotor area) and the ventro-dorsal pathways (middle occipital gyrus, inferior parietal lobule) the action network, as well as the insula and the left hippocampus. Furthermore, significant correlations within connecting fiber tracts - particularly alterations within the bilateral corona radiata superior and anterior as well as the corpus callosum -were associated with Tool use performance. Conclusions: Tool use performance was impaired in schizophrenia, which was associated with reduced GM volume in the action network. Our results are in line with reports of impaired tool use in patients with brain lesions particularly of the dorso-dorsal and ventro-dorsal stream of the action network. In addition an effect of tool use on WM integrity was shown within fiber tracts connecting regions important for planning and executing tool use. Furthermore, hippocampus is part of a brain system responsible for spatial memory and navigation.The results suggest that structural brain alterations in the common praxis network contribute to impaired tool use in schizophrenia.
Resumo:
Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001) compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001). Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.
Resumo:
BACKGROUND AND AIM There is a lack of suitable in vitro models to evaluate various treatment modalities intending to remove subgingival bacterial biofilm. Consequently, the aims of this in vitro-study were: a) to establish a pocket model enabling mechanical removal of biofilm and b) to evaluate repeated non-surgical periodontal treatment with respect to biofilm removal and reformation, surface alterations, tooth hard-substance-loss, and attachment of periodontal ligament (PDL) fibroblasts. MATERIAL AND METHODS Standardized human dentin specimens were colonized by multi-species biofilms for 3.5 days and subsequently placed into artificially created pockets. Non-surgical periodontal treatment was performed as follows: a) hand-instrumentation with curettes (CUR), b) ultrasonication (US), c) subgingival air-polishing using erythritol (EAP) and d) subgingival air-polishing using erythritol combined with chlorhexidine digluconate (EAP-CHX). The reduction and recolonization of bacterial counts, surface roughness (Ra and Rz), the caused tooth substance-loss (thickness) as well as the attachment of PDL fibroblasts were evaluated and statistically analyzed by means of ANOVA with Post-Hoc LSD. RESULTS After 5 treatments, bacterial reduction in biofilms was highest when applying EAP-CHX (4 log10). The lowest reduction was found after CUR (2 log10). Additionally, substance-loss was the highest when using CUR (128±40 µm) in comparison with US (14±12 µm), EAP (6±7 µm) and EAP-CHX (11±10) µm). Surface was roughened when using CUR and US. Surfaces exposed to US and to EAP attracted the highest numbers of PDL fibroblasts. CONCLUSION The established biofilm model simulating a periodontal pocket combined with interchangeable placements of test specimens with multi-species biofilms enables the evaluation of different non-surgical treatment modalities on biofilm removal and surface alterations. Compared to hand instrumentation the application of ultrasonication and of air-polishing with erythritol prevents from substance-loss and results in a smooth surface with nearly no residual biofilm that promotes the reattachment of PDL fibroblasts.
Resumo:
Mercury (Hg) contamination is a global issue due to its anthropogenic release, long-range transport, and deposition in remote areas. In Kejimkujik National Park and National Historic Site, Nova Scotia, Canada, high concentrations of total mercury (THg) were found in tissues of yellow perch (Perca flavescens). The aim of this study was to evaluate a possible relationship between THg concentrations and the morphology of perch liver as a main site of metal storage and toxicity. Yellow perch were sampled from five lakes known to contain fish representing a wide range in Hg concentrations in fall 2013. The ultrastructure of hepatocytes and the distribution of Hg within the liver parenchyma were analyzed by transmission electron microscopy (TEM) and electron energy loss spectrometry (EELS). The relative area of macrophage aggregates (MAs) in the liver was determined using image analysis software and fluorescence microscopy. No relation between general health indicators (Fulton's condition index) and THg was observed. In line with this, TEM examination of the liver ultrastructure revealed no prominent pathologies related to THg accumulation. However, a morphological parameter that appeared to increase with muscle THg was the relative area of MAs in the liver. The hepatic lysosomes appeared to be enlarged in samples with the highest THg concentrations. Interestingly, EELS analysis revealed that the MAs and hepatic lysosomes contained Hg.
Resumo:
Dimensional alterations of the facial soft and bone tissues following tooth extraction in the esthetic zone play an essential role to achieve successful outcomes in implant therapy. This prospective study is the first to investigate the interplay between the soft tissue dimensions and the underlying bone anatomy during an 8-wk healing period. The analysis is based on sequential 3-dimensional digital surface model superimpositions of the soft and bone tissues using digital impressions and cone beam computed tomography during an 8-wk healing period. Soft tissue thickness in thin and thick bone phenotypes at extraction was similar, averaging 0.7 mm and 0.8 mm, respectively. Interestingly, thin bone phenotypes revealed a 7-fold increase in soft tissue thickness after an 8-wk healing period, whereas in thick bone phenotypes, the soft tissue dimensions remained unchanged. The observed spontaneous soft tissue thickening in thin bone phenotypes resulted in a vertical soft tissue loss of only 1.6 mm, which concealed the underlying vertical bone resorption of 7.5 mm. Because of spontaneous soft tissue thickening, no significant differences were detected in the total tissue loss between thin and thick bone phenotypes at 2, 4, 6, and 8 wk. More than 51% of these dimensional alterations occurred within 2 wk of healing. Even though the observed spontaneous soft tissue thickening in thin bone phenotypes following tooth extraction conceals the pronounced underlying bone resorption pattern by masking the true bone deficiency, spontaneous soft tissue thickening offers advantages for subsequent bone regeneration and implant therapies in sites with high esthetic demand (Clinicaltrials.gov NCT02403700).
Resumo:
Objective Diagnosis of semantic dementia relies on cost-intensive MRI or PET, although resting EEG markers of other dementias have been reported. Yet the view still holds that resting EEG in patients with semantic dementia is normal. However, studies using increasingly sophisticated EEG analysis methods have demonstrated that slightest alterations of functional brain states can be detected. Methods We analyzed the common four resting EEG microstates (A, B, C, and D) of 8 patients with semantic dementia in comparison with 8 healthy controls and 8 patients with Alzheimer’s disease. Results Topographical differences between the groups were found in microstate classes B and C, while microstate classes A and D were comparable. The data showed that the semantic dementia group had a peculiar microstate E, but the commonly found microstate C was lacking. Furthermore, the presence of microstate E was significantly correlated with lower MMSE and language scores. Conclusion Alterations in resting EEG can be found in semantic dementia. Topographical shifts in microstate C might be related to semantic memory deficits. Significance This is the first study that discovered resting state EEG abnormality in semantic dementia. The notion that resting EEG in this dementia subtype is normal has to be revised.
Resumo:
Different features of sensorimotor function and behaviour were studied in murine cerebral malaria (CM) and malaria without cerebral involvement (non-CM) applying the primary screen of the SHIRPA protocol. Histopathological analysis of distinct brain regions was performed and the relative size of haemorrhages and plugging of blood cells to brain vasculature was analysed. Animals suffering from CM develop a wide range of behavioural and functional alterations in the progressive course of the disease with a statistically significant impairment in all functional categories assessed 36 h prior to death when compared with control animals. Early functional indicators of cerebral phenotype are impairments in reflex and sensory system and in neuropsychiatric state. Deterioration in function is paralleled by the degree of histopathological changes with a statistically significant correlation between the SHIRPA score of CM animals and the mean size of brain haemorrhage. Furthermore, image analysis yielded that the relative area of the brain lesions was significantly larger in the forebrain and brainstem compared with the other regions of interest. Our results indicate that assessment of sensory and motor tasks by the SHIRPA primary screen is appropriate for the early in vivo discrimination of cerebral involvement in experimental murine malaria. Our findings also suggest a correlation between the degree of functional impairment and the size of the brain lesions as indicated by parenchymal haemorrhage. Applying the SHIRPA protocol in the functional characterization of animals suffering from CM might prove useful in the preclinical assessment of new antimalarial and potential neuroprotective therapies.
Resumo:
Cerebral malaria (CM) is associated with high mortality and morbidity as a certain percentage of survivors suffers from persistent neurological sequelae. The mechanisms leading to death and functional impairments are yet not fully understood. This study investigated biochemical and morphological markers of apoptosis in the brains of mice infected with Plasmodium berghei ANKA. Cleaved caspase-3 was detected in the brains of animals with clinical signs of CM and immunoreactivity directly correlated with the clinical severity of the disease. Caudal parts of the brain showed more intense immunoreactivity for cleaved caspase-3. Double-labelling experiments revealed processing of caspase-3 primarily in neurons and oligodendrocytes. These cells also exhibited apoptotic-like morphological profiles in ultrastructural analysis. Further, cleavage of caspase-3 was found in endothelial cells. In contrast to neurons and oligodendrocytes, apoptosis of endothelial cells already occurred in early stages of the disease. Our results are the first to demonstrate processing of caspase-3 in different central nervous system cells of animals with CM. Apoptosis of endothelial cells may represent a critical issue for the development of the disease in the mouse model. Neurological signs and symptoms might be attributable, at least in part, to apoptotic degeneration of neurons and glia in advanced stages of murine CM.