96 resultados para Plasmacytoïd dendritic cell


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The precise timing of events in the brain has consequences for intracellular processes, synaptic plasticity, integration and network behaviour. Pyramidal neurons, the most widespread excitatory neuron of the neocortex have multiple spike initiation zones, which interact via dendritic and somatic spikes actively propagating in all directions within the dendritic tree. For these neurons, therefore, both the location and timing of synaptic inputs are critical. The time window for which the backpropagating action potential can influence dendritic spike generation has been extensively studied in layer 5 neocortical pyramidal neurons of rat somatosensory cortex. Here, we re-examine this coincidence detection window for pyramidal cell types across the rat somatosensory cortex in layers 2/3, 5 and 6. We find that the time-window for optimal interaction is widest and shifted in layer 5 pyramidal neurons relative to cells in layers 6 and 2/3. Inputs arriving at the same time and locations will therefore differentially affect spike-timing dependent processes in the different classes of pyramidal neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatiotemporal control of neuronal excitability is fundamental to the inhibitory process. We now have a wealth of information about the active dendritic properties of cortical neurons including axonally generated sodium action potentials as well as local sodium spikelets generated in the dendrites, calcium plateau spikes, and NMDA spikes. All of these events have been shown to be highly modified by the spatiotemporal pattern of nearby inhibitory input which can drastically change the output firing mode of the neuron. This means that particular populations of interneurons embedded in the neocortical microcircuitry can more precisely control pyramidal cell output than has previously been thought. Furthermore, the output of any given neuron tends to feed back onto inhibitory circuits making the resultant network activity further dependent on inhibition. Network activity is therefore ultimately governed by the subcellular microcircuitry of the cortex and it is impossible to ignore the subcompartmentalization of inhibitory influence at the neuronal level in order to understand its effects at the network level. In this article, we summarize the inhibitory circuits that have been shown so far to act on specific dendritic compartments in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study synaptic plasticity in a complex neuronal cell model where NMDA-spikes can arise in certain dendritic zones. In the context of reinforcement learning, two kinds of plasticity rules are derived, zone reinforcement (ZR) and cell reinforcement (CR), which both optimize the expected reward by stochastic gradient ascent. For ZR, the synaptic plasticity response to the external reward signal is modulated exclusively by quantities which are local to the NMDA-spike initiation zone in which the synapse is situated. CR, in addition, uses nonlocal feedback from the soma of the cell, provided by mechanisms such as the backpropagating action potential. Simulation results show that, compared to ZR, the use of nonlocal feedback in CR can drastically enhance learning performance. We suggest that the availability of nonlocal feedback for learning is a key advantage of complex neurons over networks of simple point neurons, which have previously been found to be largely equivalent with regard to computational capability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset neurological disease resulting from mutations in the SACS gene encoding sacsin, a 4,579-aa protein of unknown function. Originally identified as a founder disease in Québec, ARSACS is now recognized worldwide. Prominent features include pyramidal spasticity and cerebellar ataxia, but the underlying pathology and pathophysiological mechanisms are unknown. We have generated an animal model for ARSACS, sacsin knockout mice, that display age-dependent neurodegeneration of cerebellar Purkinje cells. To explore the pathophysiological basis for this observation, we examined the cell biological properties of sacsin. We show that sacsin localizes to mitochondria in non-neuronal cells and primary neurons and that it interacts with dynamin-related protein 1, which participates in mitochondrial fission. Fibroblasts from ARSACS patients show a hyperfused mitochondrial network, consistent with defects in mitochondrial fission. Sacsin knockdown leads to an overly interconnected and functionally impaired mitochondrial network, and mitochondria accumulate in the soma and proximal dendrites of sacsin knockdown neurons. Disruption of mitochondrial transport into dendrites has been shown to lead to abnormal dendritic morphology, and we observe striking alterations in the organization of dendritic fields in the cerebellum of knockout mice that precedes Purkinje cell death. Our data identifies mitochondrial dysfunction/mislocalization as the likely cellular basis for ARSACS and indicates a role for sacsin in regulation of mitochondrial dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Glycopeptide dendrimers are being developed for inhibition of pathogen adhesion to host cells, a process mediated by carbohydrate-lectins interactions. Such compounds could be used in the treatment of infections by pathogenic bacteria such as Pseudomonas aeruginosa that can be resistant to known antibiotics. Pseudomonas aeruginosa produces two lectins, the fucose binding LecB and the galactose binding LecA. Both lectins have been shown to be virulence factors, involved in cell adhesion and biofilms formation. Screening combinatorial libraries of fucosylated peptide dendrimers led to the glycopeptide dendrimer (C-Fuc-LysProLeu)4(LysPheLysIle)2 LysHisIleNH2. This dendrimer binds the lectin LecB with submicromolar IC50 and shows potent inhibition of P. aeruginosa biofilms for both the laboratory strain PAO1 and for clinical isolates [1]. Appending the peptide dendrimer portion of FD2 with galactosy endgroups gave galactosylpeptide dendrimers as potent ligands for LecA which also act as biofilm inhibitors. Structure-activity relationship studies demonstrated that multivalency was essential for strong binding and biofilm inhibition. [2]The results open the way to develop therapeutic agents based on glycopeptide dendrimers. Peptide dendrimers with antimicrobial properties and good cell penetration are other applications of dendritic peptides we are now investigating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The apical tuft of layer 5 pyramidal neurons is innervated by a large number of inhibitory inputs with unknown functions. Here, we studied the functional consequences and underlying molecular mechanisms of apical inhibition on dendritic spike activity. Extracellular stimulation of layer 1, during blockade of glutamatergic transmission, inhibited the dendritic Ca2+ spike for up to 400 ms. Activation of metabotropic GABAB receptors was responsible for a gradual and long-lasting inhibitory effect, whereas GABAA receptors mediated a short-lasting (approximately 150 ms) inhibition. Our results suggest that the mechanism underlying the GABAB inhibition of Ca2+ spikes involves direct blockade of dendritic Ca2+ channels. By using knockout mice for the two predominant GABAB1 isoforms, GABAB1a and GABAB1b, we showed that postsynaptic inhibition of Ca2+ spikes is mediated by GABAB1b, whereas presynaptic inhibition of GABA release is mediated by GABAB1a. We conclude that the molecular subtypes of GABAB receptors play strategically different physiological roles in neocortical neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic cells (DCs) can release microvesicles, but the latter's numbers, size, and fate are unclear. Fluorescently labeled DCs were visualized by laser-scanning microscopy. Using a Surpass algorithm, we were able to identify and quantify per cell several hundred microvesicles released from the surface of stimulated DCs. We show that most of these microvesicles are not of endocytic origin but result from budding of the plasma membrane, hence their name, exovesicle. Using a double vital staining, we show that exovesicles isolated from activated DCs can fuse with the membrane of resting DCs, thereby allowing them to present alloantigens to lymphocytes. We concluded that, within a few hours from their release, exovesicles may amplify local or distant adaptive immunological response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of species selectivity, HIV research is largely restricted to in vitro or clinical studies, both limited in their ability to rapidly assess new strategies to fight the virus. To prospectively study some aspects of HIV in vivo, immunodeficient mice, transplanted with either human peripheral blood leukocytes or human fetal tissues, have been developed. Although these are susceptible to HIV infection, xenoreactivity, and short infection spans, resource and ethical constraints, as well as biased HIV coreceptor tropic strain infection, pose substantial problems in their use. Rag2(-/-)gamma(c)(-/-) mice, transplanted as newborns with human CD34(+) cells, were recently shown to develop human B, T, and dendritic cells, constituting lymphoid organs in situ. Here we tested these mice as a model system for HIV-1 infection. HIV RNA levels peaked to up to 2 x 10(6) copies per milliliter of plasma early after infection, and viremia was observed for up to 190 days, the longest time followed. A marked relative CD4(+) T cell depletion in peripheral blood occurred in CXCR4-tropic strain-infected mice, whereas this was less pronounced in CCR5-tropic strain-infected animals. Thymus infection was almost exclusively observed in CXCR4-tropic strain-infected mice, whereas spleen and lymph node HIV infection occurred irrespective of coreceptor selectivity, consistent with respective coreceptor expression on human CD4(+) T cells. Thus, this straightforward to generate and cost-effective in vivo model closely resembles HIV infection in man and therefore should be valuable to study virus-induced pathology and to rapidly evaluate new approaches aiming to prevent or treat HIV infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of subcellular Ca(2+) signaling rely on methods for labeling cells with fluorescent Ca(2+) indicator dyes. In this study, we demonstrate the use of single-cell electroporation for Ca(2+) indicator loading of individual neurons and small neuronal networks in rat neocortex in vitro and in vivo. Brief voltage pulses were delivered through glass pipettes positioned close to target cells. This approach resulted in reliable and rapid (within seconds) loading of somata and subsequent complete labeling of dendritic and axonal arborizations. By using simultaneous whole-cell recordings in brain slices, we directly addressed the effect of electroporation on neurons. Cell viability was high (about 85%) with recovery from the membrane permeabilization occurring within a minute. Electrical properties of recovered cells were indistinguishable before and after electroporation. In addition, Ca(2+) transients with normal appearance could be evoked in dendrites, spines, and axonal boutons of electroporated cells. Using negative-stains of somata, targeted single-cell electroporation was equally applicable in vivo. We conclude that electroporation is a simple approach that permits Ca(2+) indicator loading of multiple cells with low background staining within a short amount of time, which makes it especially well suited for functional imaging of subcellular Ca(2+) dynamics in small neuronal networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium influx into the dendritic tufts of layer 5 neocortical pyramidal neurons modifies a number of important cellular mechanisms. It can trigger local synaptic plasticity and switch the firing properties from regular to burst firing. Due to methodological limitations, our knowledge about Ca2+ spikes in the dendritic tuft stems mostly from in vitro experiments. However, it has been speculated that regenerative Ca2+ events in the distal dendrites correlate with distinct behavioral states. Therefore it would be most desirable to be able to record these Ca2+ events in vivo, preferably in the behaving animal. Here, we present a novel approach for recording Ca2+ signals in the dendrites of populations of layer 5 pyramidal neurons in vivo, which ensures that all recorded fluorescence changes are due to intracellular Ca2+ signals in the apical dendrites. The method has two main features: 1) bolus loading of layer 5 with a membrane-permeant Ca2+ dye resulting in specific loading of pyramidal cell dendrites in the upper layers and 2) a fiberoptic cable attached to a gradient index lens and a prism reflecting light horizontally at 90 degrees to the angle of the apical dendrites. We demonstrate that the in vivo signal-to-noise ratio recorded with this relatively inexpensive and easy-to-implement fiberoptic-based device is comparable to conventional camera-based imaging systems used in vitro. In addition, the device is flexible and lightweight and can be used for recording Ca2+ signals in the distal dendritic tuft of freely behaving animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Layer 2/3 (L2/3) pyramidal neurons are the most abundant cells of the neocortex. Despite their key position in the cortical microcircuit, synaptic integration in dendrites of L2/3 neurons is far less understood than in L5 pyramidal cell dendrites, mainly because of the difficulties in obtaining electrical recordings from thin dendrites. Here we directly measured passive and active properties of the apical dendrites of L2/3 neurons in rat brain slices using dual dendritic-somatic patch-clamp recordings and calcium imaging. Unlike L5 cells, L2/3 dendrites displayed little sag in response to long current pulses, which suggests a low density of I(h) in the dendrites and soma. This was also consistent with a slight increase in input resistance with distance from the soma. Brief current injections into the apical dendrite evoked relatively short (half-width 2-4 ms) dendritic spikes that were isolated from the soma for near-threshold currents at sites beyond the middle of the apical dendrite. Regenerative dendritic potentials and large concomitant calcium transients were also elicited by trains of somatic action potentials (APs) above a critical frequency (130 Hz), which was slightly higher than in L5 neurons. Initiation of dendritic spikes was facilitated by backpropagating somatic APs and could cause an additional AP at the soma. As in L5 neurons, we found that distal dendritic calcium transients are sensitive to a long-lasting block by GABAergic inhibition. We conclude that L2/3 pyramidal neurons can generate dendritic spikes, sharing with L5 pyramidal neurons fundamental properties of dendritic excitability and control by inhibition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the human brain, cortical GABAergic interneurons represent an important population of local circuit neurons responsible for the intrinsic modulation of neuronal information and have been supposed to be involved in the pathophysiology of schizophrenia. We conducted a quantitative study on the differentiated three-dimensional morphological structure of two types of parvalbumin-immunoreactive interneurons in the anterior cingulate cortex (ACC) of schizophrenic patients versus controls. While type A interneurons ('small bipolar cells') showed a significant reduction of their soma size in schizophrenics, type B interneurons ('small multipolar cells') of schizophrenic patients exhibited a marked decrease in the extent of their dendritic system. These results further support the assumption of a considerable significance of the ACC, an important limbic relay centre, for the etiopathogenesis of schizophrenic psychoses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IL-15 has recently been shown to induce the differentiation of functional dendritic cells (DCs) from human peripheral blood monocytes. Since DCs lay in close proximity to epithelial cells in the airway mucosa, we investigated whether airway epithelial cells release IL-15 in response to inflammatory stimuli and thereby induce differentiation and maturation of DCs. Alveolar (A549) and bronchial (BEAS-2B) epithelial cells produced IL-15 spontaneously and in a time- and dose-dependent manner after stimulation with IL-1beta, IFN-gamma, or TNF-alpha. Airway epithelial cell supernatants induced an increase of IL-15Ralpha gene expression in ex vivo monocytes, and stimulated DCs enhanced their IL-15Ralpha gene expression up to 300-fold. Airway epithelial cell-conditioned media induced the differentiation of ex vivo monocytes into partially mature DCs (HLA-DR+, DC-SIGN+, CD14+, CD80-, CD83+, CD86+, CCR3+, CCR6(+), CCR7-). Based on their phenotypic (CD123+, BDCA2+, BDCA4+, BDCA1(-), CD1a-) and functional properties (limited maturation upon stimulation with LPS and limited capacity to induce T cell proliferation), these DCs resembled plasmacytoid DCs. The effects of airway epithelial cell supernatants were largely blocked by a neutralizing monoclonal antibody to IL-15. Thus, our results demonstrate that airway epithelial cell-conditioned media have the capacity to differentiate monocytes into functional DCs, a process substantially mediated by epithelial-derived IL-15.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fine particles (0.1-2.5 microm in diameter) may cause increased pulmonary morbidity and mortality. We demonstrate with a cell culture model of the human epithelial airway wall that dendritic cells extend processes between epithelial cells through the tight junctions to collect particles in the "luminal space" and to transport them through cytoplasmic processes between epithelial cells across the epithelium or to transmigrate through the epithelium to take up particles on the epithelial surface. Furthermore, dendritic cells interacted with particle-loaded macrophages on top of the epithelium and with other dendritic cells within or beneath the epithelium to take over particles. By comparing the cellular interplay of dendritic cells and macrophages across epithelial monolayers of different transepithelial electrical resistance, we found that more dendritic cells were involved in particle uptake in A549 cultures showing a low transepithelial electrical resistance compared with dendritic cells in16HBE14o cultures showing a high transepithelial electrical resistance 10 min (23.9% versus 9.5%) and 4 h (42.1% versus 14.6%) after particle exposition. In contrast, the macrophages in A549 co-cultures showed a significantly lower involvement in particle uptake compared with 16HBE14o co-cultures 10 min (12.8% versus 42.8%) and 4 h (57.4% versus 82.7%) after particle exposition. Hence we postulate that the epithelial integrity influences the particle uptake by dendritic cells, and that these two cell types collaborate as sentinels against foreign particulate antigen by building a transepithelial interacting cellular network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Photodynamic therapy with 5-aminolevulinic acid (5-ALA-PDT) exerts cell type specific effects on target cells. Since chondrocytes were found to be more resistant than osteoblasts to 5-ALA-PDT, the pre-treatment of osteochondral grafts with 5-ALA-PDT may represent a means to devitalize the osseous portion while maintaining functional cartilage. The present study was designed to determine the effects of 5-ALA-PDT in vitro on cell populations residing in skeletal tissues. METHODS: Osteoblasts, fibroblasts, bone marrow cells, and dendritic cells were incubated with 0.5 mM 5-ALA for 4 h. Protoporphyrin IX (PpIX) accumulation and after exposure to light cellular functions were assessed for up to 6 days. RESULTS: Accumulation of PpIX reached a plateau at 0.5 mM in osteoblasts, fibroblasts, and dendritic cells, and at 2.0 mM in bone marrow cells. At 0.5 mM 5-ALA, similar responses to illumination were observed in all cells with a survival rate of less than 12% at a light dose of 20 J/cm(2). The function of osteoblasts (proliferation, levels of mRNA encoding collagen type I, alkaline phosphatase activity) and fibroblasts (proliferation, levels of mRNAs encoding collagens type I and III) was not affected, when the cells were treated with 5-ALA and light doses of < or =10 J/cm(2). Paralleling the reduction of viable cells after 5-ALA-PDT, the capacity of dendritic cells to stimulate T cells in a mixed leukocyte reaction decreased to 4+/-2% at 20 J/cm(2). CONCLUSION: The investigated cell types were sensitive to 5-ALA-PDT and the residual cell debris did not elicit an allogenic response. These findings, together with the resistance of chondrocytes to 5-ALA-PDT, encourage the further investigation of this protocol in the pretreatment of osteochondral allografts.