109 resultados para Plant species diversity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims Reintroduction has become an important tool for the management of endangered plant species. We tested the little-explored effects of small-scale environmental variation, genotypic composition (i.e. identity of genotypes), and genotypic diversity on the population survival of the regionally rare clonal plant Ranunculus reptans. For this species of periodically inundated lakeshores genetic differentiation had been reported between populations and between short-flooded and long-flooded microsites within populations.Methods We established 306 experimental test populations at a previously unoccupied lake shore, comprising either monocultures of 32 genotypes, mixtures of genotypes within populations or mixtures of genotypes between populations. In 2000, three years after planting out at the experimental site, a long-lasting flood caused the death of half of the experimental populations. In 2003, an extreme drought resulted in the lowest summer water levels ever measured.Important findings Despite these climatic extremes, 27 of the established populations survived until the end of the experiment in December 2003. The success of experimental populations largely differed between microsites. Moreover, the success of genotype monocultures depended on genotype and source population. Genetic differentiation between microsites played a minor role for the success of reintroduction. After the flood, populations planted with genotypes from different source populations increased in abundance, whereas populations with genotypes from single source populations and genotype monocultures decreased. We conclude that sources for reintroductions need to be selected carefully. Moreover, mixtures of plants from different populations appear to be the best choice for successful reintroduction, at least in unpredictably varying environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human land use may detrimentally affect biodiversity, yet long-term stability of species communities is vital for maintaining ecosystem functioning. Community stability can be achieved by higher species diversity (portfolio effect), higher asynchrony across species (insurance hypothesis) and higher abundance of populations. However, the relative importance of these stabilizing pathways and whether they interact with land use in real-world ecosystems is unknown. We monitored inter-annual fluctuations of 2,671 plant, arthropod, bird and bat species in 300 sites from three regions. Arthropods show 2.0-fold and birds 3.7-fold higher community fluctuations in grasslands than in forests, suggesting a negative impact of forest conversion. Land-use intensity in forests has a negative net impact on stability of bats and in grasslands on birds. Our findings demonstrate that asynchrony across species—much more than species diversity alone—is the main driver of variation in stability across sites and requires more attention in sustainable management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: Species diversity and genetic diversity may be affected in parallel by similar environmental drivers. However, genetic diversity may also be affected independently by habitat characteristics. We aim at disentangling relationships between genetic diversity, species diversity and habitat characteristics of woody species in subtropical forest. Methods: We studied 11 dominant tree and shrub species in 27 plots in Gutianshan, China, and assessed their genetic diversity (Ar) and population differentiation (F’ST) with microsatellite markers. We tested if Ar and population specific F’ST were correlated to local species diversity and plot characteristics. Multi-model inference and model averaging were used to determine the relative importance of each predictor. Additionally we tested for isolation-by-distance and isolation-by-elevation by regressing pairwise F’ST against pairwise spatial and elevational distances. Important findings: Genetic diversity was not related to species diversity for any of the study species. Thus, our results do not support joint effects of habitat characteristics on these two levels of biodiversity. Instead, genetic diversity in two understory shrubs, Rhododendron simsii and Vaccinium carlesii, was affected by plot age with decreasing genetic diversity in successionally older plots. Population differentiation increased with plot age in Rhododendron simsii and Lithocarpus glaber. This shows that succession can reduce genetic diversity within, and increase genetic diversity between populations. Furthermore, we found four cases of isolation-by-distance and two cases of isolation-by-elevation. The former indicates inefficient pollen and seed dispersal by animals whereas the latter might be due to phenological asynchronies. These patterns indicate that succession can affect genetic diversity without parallel effects on species diversity and that gene flow in a continuous subtropical forest can be restricted even at a local scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims The relationship between biodiversity and ecosystem functioning is among the most active areas of ecological research. Furthermore, enhancing the diversity of degraded ecosystems is a major goal in applied restoration ecology. In grasslands, many species may be locally absent due to dispersal or microsite limitation and may therefore profit from mechanical disturbance of the resident vegetation. We established a seed addition and disturbance experiment across several grassland sites of different land use to test whether plant diversity can be increased in these grasslands. Additionally, the experiment will allow us testing the consequences of increased plant diversity for ecosystem processes and for the diversity of other taxa in real-world ecosystems. Here we present details of the experimental design and report results from the first vegetation survey one year after disturbance and seed addition. Moreover, we tested whether the effects of seed addition and disturbance varied among grassland depending on their land use or pre-disturbance plant diversity. Methods A full-factorial experiment was installed in 73 grasslands in three regions across Germany. Grasslands were under regular agricultural use, but varied in the type and the intensity of management, thereby representing the range of management typical for large parts of Central Europe. The disturbance treatment consisted of disturbing the top 10 cm of the sward using a rotavator or rotary harrow. Seed addition consisted of sowing a high-diversity seed mixture of regional plant species. These species were all regionally present, but often locally absent, depending on the resident vegetation composition and richness of each grassland. Important findings One year after sward disturbance it had significantly increased cover of bare soil, seedling species richness and numbers of seedlings. Seed addition had increased plant species richness, but only in combination with sward disturbance. The increase in species richness, when both seed addition and disturbance was applied, was higher at high land-use intensity and low resident diversity. Thus, we show that at least the early recruitment of many species is possible also at high land-use intensity, indicating the potential to restore and enhance biodiversity of species-poor agricultural grasslands. Our newly established experiment provides a unique platform for broad-scale research on the land-use dependence of future trajectories of vegetation diversity and composition and their effects on ecosystem functioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diversity–stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several prominent hypotheses have been posed to explain the immense variability among plant species in defense against herbivores. A major concept in the evolutionary ecology of plant defenses is that tradeoffs of defense strategies are likely to generate and maintain species diversity. In particular, tradeoffs between constitutive and induced resistance and tradeoffs relating these strategies to growth and competitive ability have been predicted. We performed three independent experiments on 58 plant species from 15 different plant families to address these hypotheses in a phylogenetic framework. Because evolutionary tradeoffs may be altered by human-imposed artificial selection, we used 18 wild plant species and 40 cultivated garden-plant species. Across all 58 plant species, we demonstrate a tradeoff between constitutive and induced resistance, which was robust to accounting for phylogenetic history of the species. Moreover, the tradeoff was driven by wild species and was not evident for cultivated species. In addition, we demonstrate that more competitive species—but not fast growing ones—had lower constitutive but higher induced resistance. Thus, our multispecies experiments indicate that the competition–defense tradeoff holds for constitutive resistance and is complemented by a positive relationship of competitive ability with induced resistance. We conclude that the studied genetically determined tradeoffs are indeed likely to play an important role in shaping the high diversity observed among plant species in resistance against herbivores and in life history traits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While bryophytes greatly contribute to plant diversity of semi-natural grasslands, little is known about the relationships between land-use intensity, productivity, and bryophyte diversity in these habitats. We recorded vascular plant and bryophyte vegetation in 85 agricultural used grasslands in two regions in northern and central Germany and gathered information on land-use intensity. To assess grassland productivity, we harvested aboveground vascular plant biomass and analyzed nutrient concentrations of N, P, K, Ca and Mg. Further we calculated mean Ellenberg indicator values of vascular plant vegetation. We tested for effects of land-use intensity and productivity on total bryophyte species richness and on the species richness of acrocarpous (small & erect) and pleurocarpous (creeping, including liverworts) growth forms separately. Bryophyte species were found in almost all studied grasslands, but species richness differed considerably between study regions in northern Germany (2.8 species per 16 m2) and central Germany (6.4 species per 16 m2) due environmental differences as well as land-use history. Increased fertilizer application, coinciding with high mowing frequency, reduced bryophyte species richness significantly. Accordingly, productivity estimates such as plant biomass and nitrogen concentration were strongly negatively related to bryophyte species richness, although productivity decreased only pleurocarpous species. Ellenberg indicator values for nutrients proved to be useful indicators of species richness and productivity. In conclusion, bryophyte composition was strongly dependent on productivity, with smaller bryophytes that were likely negatively affected by greater competition for light. Intensive land-use, however, can also indirectly decrease bryophyte species richness by promoting grassland productivity. Thus, increasing productivity is likely to cause a loss of bryophyte species and a decrease in species diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fragmentation and vegetative regeneration from small fragments may contribute to population expansion, dispersal and establishment of new populations of introduced plants. However, no study has systematically tested whether a high capacity of vegetative regeneration is associated with a high degree of invasiveness. For small single-node fragments, the presence of internodes may increase regeneration capacity because internodes may store carbohydrates and proteins that can be used for regeneration. We conducted an experiment with 39 stoloniferous plant species to examine the regeneration capacity of small, single-node fragments with or without attached stolon internodes. We asked (1) whether the presence of stolon internodes increases regeneration from single-node fragments, (2) whether regeneration capacity differs between native and introduced species in China, and (3) whether regeneration capacity is positively associated with plant invasiveness at a regional scale (within China) and at a global scale. Most species could regenerate from single-node fragments, and the presence of internodes increased regeneration rate and subsequent growth and/or asexual reproduction. Regeneration capacity varied greatly among species, but showed no relationship to invasiveness, either in China or globally. High regeneration capacity from small fragments may contribute to performance of clonal plants in general, but it does not appear to explain differences in invasiveness among stoloniferous clonal species

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in agricultural practices of semi-natural mountain grasslands are expected to modify plant community structure and shift dominance patterns. Using vegetation surveys of 11 sites in semi-natural grasslands of the Swiss Jura and Swiss and French Alps, we determined the relative contribution of dominant, subordinate and transient plant species in grazed and abandoned communities and observed their changes along a gradient of productivity and in response to abandonment of pasturing. The results confirm the humpbacked diversity–productivity relationship in semi-natural grassland, which is due to the increase of subordinate species number at intermediate productivity levels. Grazed communities, at the lower or higher end of the species diversity gradient, suffered higher species loss after grazing abandonment. Species loss after abandonment of pasturing was mainly due to a higher reduction in the number of subordinate species, as a consequence of the increasing proportion of dominant species. When plant biodiversity maintenance is the aim, our results have direct implications for the way grasslands should be managed. Indeed, while intensification and abandonment have been accelerated since few decades, our findings in this multi-site analysis confirm the importance of maintaining intermediate levels of pasturing to preserve biodiversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determinants of plant establishment and invasion are a key issue in ecology and evolution. Although establishment success varies substantially among species, the importance of species traits and extrinsic factors as determinants of establishment in existing communities has remained difficult to prove in observational studies because they can be confounded and mask each other. Therefore, we conducted a large multispecies field experiment to disentangle the relative importance of extrinsic factors vs. species characteristics for the establishment success of plants in grasslands. We introduced 48 alien and 45 native plant species at different seed numbers into multiple grassland sites with or without experimental soil disturbance and related their establishment success to species traits assessed in five independent multispecies greenhouse experiments. High propagule pressure and high seed mass were the most important factors increasing establishment success in the very beginning of the experiment. However, after 3 y, propagule pressure became less important, and species traits related to biotic interactions (including herbivore resistance and responses to shading and competition) became the most important drivers of success or failure. The relative importance of different traits was environment-dependent and changed over time. Our approach of combining a multispecies introduction experiment in the field with trait data from independent multispecies experiments in the greenhouse allowed us to detect the relative importance of species traits for early establishment and provided evidence that species traits—fine-tuned by environmental factors—determine success or failure of alien and native plants in temperate grasslands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the course of the biodiversity-ecosystem functioning debate, the issue of multifunctionality of species communities has recently become a major focus. Elemental stoichiometry is related to a variety of processes reflecting multiple plant responses to the biotic and abiotic environment. It can thus be expected that the diversity of a plant assemblage alters community level plant tissue chemistry. We explored elemental stoichiometry in aboveground plant tissue (ratios of carbon, nitrogen, phosphorus, and potassium) and its relationship to plant diversity in a 5-year study in a large grassland biodiversity experiment (Jena Experiment). Species richness and functional group richness affected community stoichiometry, especially by increasing C:P and N:P ratios. The primacy of either species or functional group richness effects depended on the sequence of testing these terms, indicating that both aspects of richness were congruent and complementary to expected strong effects of legume presence and grass presence on plant chemical composition. Legumes and grasses had antagonistic effects on C:N (−27.7% in the presence of legumes, +32.7% in the presence of grasses). In addition to diversity effects on mean ratios, higher species richness consistently decreased the variance of chemical composition for all elemental ratios. The diversity effects on plant stoichiometry has several non-exclusive explanations: The reduction in variance can reflect a statistical averaging effect of species with different chemical composition or a optimization of nutrient uptake at high diversity, leading to converging ratios at high diversity. The shifts in mean ratios potentially reflect higher allocation to stem tissue as plants grew taller at higher richness. By showing a first link between plant diversity and stoichiometry in a multiyear experiment, our results indicate that losing plant species from grassland ecosystems will lead to less reliable chemical composition of forage for herbivorous consumers and belowground litter input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of some invasive plant species to produce biochemical compounds toxic to native species, called allelopathy, is thought to be one of the reasons for their success when introduced to a novel range, an idea known as the Novel Weapons Hypothesis. However, support for this hypothesis mainly comes from bioassays and experiments conducted under controlled environments, whereas field evidence is rare. In a field experiment, we investigated whether three plant species invasive in Europe, Solidago gigantea, Impatiens glandulifera and Erigeron annuus, inhibit the germination of native species through allelopathy more than an adjacent native plant community. At three sites for each invasive species, we compared the germination of native species that were sown on invaded and non-invaded plots. Half of these plots were amended with activated carbon to reduce the influence of potential allelopathic compounds. The germination of sown seeds and of seeds from the seedbank was monitored over a period of 9 weeks. Activated carbon generally enhanced seed germination. This effect was equally pronounced in invaded and adjacent non-invaded plots, indicating that invasive species do not suppress germination more than a native plant community. In addition, more seeds germinated from the seedbank on invaded than on non-invaded soil, probably due to previous suppression of germination by the invasive species. Our field study does not provide evidence for the Novel Weapons Hypothesis with respect to the germination success of natives. Instead, our results suggest that if invasive species release allelopathic compounds that suppress germination, they do so to a similar degree as the native plant community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodiversity, a multidimensional property of natural systems, is difficult to quantify partly because of the multitude of indices proposed for this purpose. Indices aim to describe general properties of communities that allow us to compare different regions, taxa, and trophic levels. Therefore, they are of fundamental importance for environmental monitoring and conservation, although there is no consensus about which indices are more appropriate and informative. We tested several common diversity indices in a range of simple to complex statistical analyses in order to determine whether some were better suited for certain analyses than others. We used data collected around the focal plant Plantago lanceolata on 60 temperate grassland plots embedded in an agricultural landscape to explore relationships between the common diversity indices of species richness (S), Shannon's diversity (H'), Simpson's diversity (D-1), Simpson's dominance (D-2), Simpson's evenness (E), and Berger-Parker dominance (BP). We calculated each of these indices for herbaceous plants, arbuscular mycorrhizal fungi, aboveground arthropods, belowground insect larvae, and P.lanceolata molecular and chemical diversity. Including these trait-based measures of diversity allowed us to test whether or not they behaved similarly to the better studied species diversity. We used path analysis to determine whether compound indices detected more relationships between diversities of different organisms and traits than more basic indices. In the path models, more paths were significant when using H', even though all models except that with E were equally reliable. This demonstrates that while common diversity indices may appear interchangeable in simple analyses, when considering complex interactions, the choice of index can profoundly alter the interpretation of results. Data mining in order to identify the index producing the most significant results should be avoided, but simultaneously considering analyses using multiple indices can provide greater insight into the interactions in a system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims and Methods Disturbance is supposed to play an important role for biodiversity and ecosystem stability as described by the intermediate disturbance hypothesis (IDH), which predicts highest species richness at intermediate levels of disturbances. In this study, we tested the effects of artificial soil disturbances on diversity of annual and perennial vascular plants and bryophytes in a field experiment in 86 agricultural grasslands differing in land use in two regions of Germany. On each grassland, we implemented four treatments: three treatments differing in application time of soil disturbances and one control. One year after experimental disturbance, we recorded vegetation and measured biomass productivity and bare ground. We analysed the disturbance response taking effects of region and land-use-accompanied disturbance regimes into account.Important Findings Region and land-use type strongly determined plant species richness. Experimental disturbances had small positive effects on the species richness of annuals, but none on perennials or bryophytes. Bare ground was positively related to species richness of bryophytes. However, exceeding the creation of 12% bare ground further disturbance had a detrimental effect on bryophyte species richness, which corresponds to the IDH. As biomass productivity was unaffected by disturbance our results indicate that the disturbance effect on species richness of annuals was not due to decreased overall productivity, but rather due to short-term lowered inter- and intraspecific competition at the newly created microsites.Generally, our results highlight the importance of soil disturbances for species richness of annual plants and bryophytes in agricultural grasslands. However, most grasslands were disturbed naturally or by land-use practices and our additional experimental soil disturbances only had a small short-term effect. Overall, total plant diversity in grasslands seemed to be more limited by the availability of propagules rather than by suitable microsites for germination. Thus, nature conservation efforts to increase grassland diversity should focus on overcoming propagule limitation, for instance by additional sowing of seeds, while the creation of additional open patches by disturbance might only be appropriate where natural disturbances are scarce.