88 resultados para Plant ecology--Ontario--Backus Woods.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. When entomophilous plants are introduced to a new region, they may leave behind their usual pollinators. In particular, plant species with specialized pollination may then be less likely to establish and spread (i.e. become invasive). Moreover, other reproductive characteristics such as self-compatibility and flowering duration may also affect invasion success. 2. Here, we specifically asked whether plant species' specialization towards pollinator species and families, respectively, as measured in the native range, self-compatibility, flowering duration and their interactions are related to the degree of invasion (i.e. a measure of regional abundance) in non-native regions. 3. We used plant–pollinator interaction data from 119 German grassland sites to calculate unbiased indices of plant specialization towards pollinator species and families for 118 European plant species. We related these specialization indices, flowering duration, self-compatibility and their interactions to the degree of invasion of each species in seven large countries on four non-Eurasian continents. 4. In all models, plant species with long flowering durations had the highest degree of invasion. The best model included the specialization index based on pollinator species instead of the one based on pollinator families. Specialization towards pollinator species had a marginally significant positive effect on the degree of invasion in non-native regions for self-compatible, but not for self-incompatible species. 5. Synthesis. We showed that long flowering duration is related to the degree of invasion in other parts of the world, and a trend that pollinator generalization in the native range may interact with self-compatibility in determining the degree of invasion. Therefore, we conclude that such reproductive characteristics should be considered in risk assessment and management of introduced plant species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: Accumulating evidence indicates that species may be pre-adapted for invasion success in new ranges. In the light of increasing global nutrient accumulation, an important candidate pre-adaptation for invasiveness is the ability to grow in nutrient-rich habitats. Therefore we tested whether globally invasive species originating from Central Europe have come from more productive rather than less productive habitats. A further important candidate pre-adaptation for invasiveness is large niche width. Therefore, we also tested whether species able to grow across habitats with a wider range of productivity are more invasive. Location: Global with respect to invasiveness, and Central European with respect to origin of study species. Methods  We examined whether average habitat productivity and its width across habitats are significant predictors of the success of Central European species as aliens and as weeds elsewhere in the world based on data in the Global Compendium of Weeds. The two habitat productivity measures were derived from nutrient indicator values (after Ellenberg) of accompanying species present in vegetation records of the comprehensive Czech National Phytosociological Database. In the analyses, we accounted for phylogenetic relatedness among species and for size of the native distribution ranges. Results: Species from more productive habitats and with a wider native habitat-productivity niche in Central Europe have higher alien success elsewhere in the world. Weediness of species increased with mean habitat productivity. Niche width was also an important determinant of weediness for species with their main occurrence in nutrient-poor habitats, but not for those from nutrient-rich habitats. Main conclusions: Our results indicate that Central European plant species from productive habitats and those species from nutrient-poor habitat with wide productivity-niche are pre-adapted to become invasive. These results suggest that the world-wide invasion success of many Central European species is likely to have been promoted by the global increase of resource-rich habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of competition between similar species in driving community assembly is much debated. Recently, phylogenetic patterns in species composition have been investigated to help resolve this question: phylogenetic clustering is taken to imply environmental filtering, and phylogenetic overdispersion to indicate limiting similarity between species. We used experimental plant communities with random species compositions and initially even abundance distributions to examine the development of phylogenetic pattern in species abundance distributions. Where composition was held constant by weeding, abundance distributions became overdispersed through time, but only in communities that contained distantly related clades, some with several species (i.e., a mix of closely and distantly related species). Phylogenetic pattern in composition therefore constrained the development of overdispersed abundance distributions, and this might indicate limiting similarity between close relatives and facilitation/complementarity between distant relatives. Comparing the phylogenetic patterns in these communities with those expected from the monoculture abundances of the constituent species revealed that interspecific competition caused the phylogenetic patterns. Opening experimental communities to colonization by all species in the species pool led to convergence in phylogenetic diversity. At convergence, communities were composed of several distantly related but species-rich clades and had overdispersed abundance distributions. This suggests that limiting similarity processes determine which species dominate a community but not which species occur in a community. Crucially, as our study was carried out in experimental communities, we could rule out local evolutionary or dispersal explanations for the patterns and identify ecological processes as the driving force, underlining the advantages of studying these processes in experimental communities. Our results show that phylogenetic relations between species provide a good guide to understanding community structure and add a new perspective to the evidence that niche complementarity is critical in driving community assembly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m × 20 m forest plots in three regions of Germany (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwäbische Alb and Hainich-Dün, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20% lower in unmanaged than in selection forests in Hainich-Dün. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Induced changes in plant quality can mediate indirect interactions between herbivores. Although the sequence of attack by different herbivores has been shown to influence plant responses, little is known about how this affects the herbivores themselves. We therefore investigated how induction by the leaf herbivore Spodoptera frugiperda influences resistance of teosinte (Zea mays mexicana) and cultivated maize (Zea mays mays) against root-feeding larvae of Diabrotica virgifera virgifera. The importance of the sequence of arrival was tested in the field and laboratory. Spodoptera frugiperda infestation had a significant negative effect on colonization by D. virgifera larvae in the field and weight gain in the laboratory, but only when S. frugiperda arrived on the plant before the root herbivore. When S. frugiperda arrived after the root herbivore had established, no negative effects on larval performance were detected. Yet, adult emergence of D. virgifera was reduced even when the root feeder had established first, indicating that the negative effects were not entirely absent in this treatment. The defoliation of the plants was not a decisive factor for the negative effects on root herbivore development, as both minor and major leaf damage resulted in an increase in root resistance and the extent of biomass removal was not correlated with root-herbivore growth. We propose that leaf-herbivore-induced increases in feeding-deterrent and/or toxic secondary metabolites may account for the sequence-specific reduction in root-herbivore performance. Synthesis. Our results demonstrate that the sequence of arrival can be an important determinant of plant-mediated interactions between insect herbivores in both wild and cultivated plants. Arriving early on a plant may be an important strategy of insects to avoid competition with other herbivores. To fully understand plant-mediated interactions between insect herbivores, the sequence of arrival should be taken into account. © 2011 The Authors. Journal of Ecology © 2011 British Ecological Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seed predation impacts heavily on plant populations and community composition in grasslands. In particular, generalist seed predators may contribute to biotic resistance, i.e. the ability of resident species in a community to reduce the success of non-indigenous plant invaders. However, little is known of predators' preferences for seeds of indigenous or non-indigenous plant species or how seed predation varies across communities. We hypothesize that seed predation does not differ between indigenous and non-indigenous plant species and that seed predation is positively related to plant species diversity in the resident community. The seed removal of 36 indigenous and non-indigenous grassland species in seven extensively or intensively managed hay meadows across Switzerland covering a species-richness gradient of 18-50 plant species per unit area (c. 2 m(2)) was studied. In mid-summer 2011, c. 24,000 seeds were exposed to predators in Petri dishes filled with sterilized soil, and the proportions of seeds removed were determined after three days' exposure. These proportions varied among species (9.2-62.5%) and hay meadows (17.8-48.6%). Seed removal was not related to seed size. Moreover, it did not differ between indigenous and non-indigenous species, suggesting that mainly generalist seed predators were active. However, seed predation was positively related to plant species richness across a gradient in the range of 18-38 species per unit area, representing common hay meadows in Switzerland. Our results suggest that generalist post-dispersal seed predation contributes to biotic resistance and may act as a filter to plant invasion by reducing the propagule pressure of non-local plant species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complementarity that leads to more efficient resource use is presumed to be a key mechanism explaining positive biodiversity–productivity relationships but has been described solely for experimental set-ups with controlled environmental settings or for very short gradients of abiotic conditions, land-use intensity and biodiversity. Therefore, we analysed plant diversity effects on nitrogen dynamics across a broad range of Central European grasslands. The 15N natural abundance in soil and plant biomass reflects the net effect of processes affecting ecosystem N dynamics. This includes the mechanism of complementary resource utilization that causes a decrease in the 15N isotopic signal. We measured plant species richness, natural abundance of 15N in soil and plants, above-ground biomass of the community and three single species (an herb, grass and legume) and a variety of additional environmental variables in 150 grassland plots in three regions of Germany. To explore the drivers of the nitrogen dynamics, we performed several analyses of covariance treating the 15N isotopic signals as a function of plant diversity and a large set of covariates. Increasing plant diversity was consistently linked to decreased δ15N isotopic signals in soil, above-ground community biomass and the three single species. Even after accounting for multiple covariates, plant diversity remained the strongest predictor of δ15N isotopic signals suggesting that higher plant diversity leads to a more closed nitrogen cycle due to more efficient nitrogen use. Factors linked to increased δ15N values included the amount of nitrogen taken up, soil moisture and land-use intensity (particularly fertilization), all indicators of the openness of the nitrogen cycle due to enhanced N-turnover and subsequent losses. Study region was significantly related to the δ15N isotopic signals indicating that regional peculiarities such as former intensive land use could strongly affect nitrogen dynamics. Synthesis. Our results provide strong evidence that the mechanism of complementary resource utilization operates in real-world grasslands where multiple external factors affect nitrogen dynamics. Although single species may differ in effect size, actively increasing total plant diversity in grasslands could be an option to more effectively use nitrogen resources and to reduce the negative environmental impacts of nitrogen losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Many plants form associations with arbuscular mycorrhizal fungi (AMF) because they profit from improved phosphorus nutrition and from protection against pathogens. Whereas mycorrhiza-induced pathogen protection is well understood in agricultural plant species, it is rarely studied in wild plants. As many pathogens infest plants in the first days after germination, mycorrhiza-induced pathogen protection may be especially important in the first few weeks of plant establishment. Here, we investigated interacting effects of {AMF} and the seedling pathogen Pythium ultimum on the performance of six- to seven-week-old seedlings of six wild plant species of the family Asteraceae in a full factorial experiment. Plant species differed in their response to AMF, the pathogen and their interactions. {AMF} increased and the pathogen decreased plant biomass in one and three species, respectively. Two plant species were negatively affected by {AMF} in the absence, but positively or not affected in the presence of the pathogen, indicating protection by AMF. This mycorrhiza-induced pathogen protection is especially surprising as we could not detect mycorrhizal structure in the roots of any of the plants. Our results show that even seedlings without established intraradical hyphal network can profit from AMF, both in terms of growth promotion in the absence of a pathogen and pathogen protection. The function of {AMF} is highly species-specific, but tends to be similar for more closely related plant species, suggesting a phylogenetic component of mycorrhizal function. Further studies should test a wider range of plant species, as our study was restricted to one plant family, and investigate whether plants profit from early mycorrhizal benefits in the long term.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim The global spread of woody plants into grasslands is predicted to increase over the coming century. While there is general agreement regarding the anthropogenic causes of this phenomenon, its ecological consequences are less certain. We analysed how woody vegetation of differing cover affects plant diversity (richness and evenness) and the surrogates of multiple ecosystem processes (multifunctionality) in global drylands, and how these change with aridity. Location Two hundred and twenty-four dryland sites from all continents except Antarctica, widely differing in their environmental conditions (from arid to dry-subhumid sites) and relative woody cover (from 0 to 100). Methods Using a standardized field survey, we measured the cover, richness and evenness of perennial vegetation. At each site, we measured 14 soil variables related to fertility and the build-up of nutrient pools. These variables are critical for maintaining ecosystem functioning in drylands. Results Species richness and ecosystem multifunctionality were strongly related to woody vegetation, with both variables peaking at a relative woody cover (RWC) of 41–60. This relationship shifted with aridity. We observed linear positive effects of RWC in dry-subhumid sites. These positive trends shifted to hump-shaped RWC–diversity and multifunctionality relationships under semi-arid environments. Finally, hump-shaped (richness, evenness) or linear negative (multifunctionality) effects of RWC were found under the most arid conditions. Main conclusions Plant diversity and multifunctionality peaked at intermediate levels of woody cover, although this relationship became increasingly positive in wetter environments. This comprehensive study accounts for multiple ecosystem attributes across a range of levels of woody cover and environmental conditions. Our results help us to reconcile contrasting views of woody encroachment found in the current literature and can be used to improve predictions of the likely effects of encroachment on biodiversity and ecosystem services.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Once seen as anomalous, facilitative interactions among plants and their importance for community structure and functioning are now widely recognized. The growing body of modelling, descriptive and experimental studies on facilitation covers a wide variety of terrestrial and aquatic systems throughout the globe. However, the lack of a general body of theory linking facilitation among different types of organisms and biomes and their responses to environmental changes prevents further advances in our knowledge regarding the evolutionary and ecological implications of facilitation in plant communities. Moreover, insights gathered from alternative lines of inquiry may substantially improve our understanding of facilitation, but these have been largely neglected thus far. Despite over 15 years of research and debate on this topic, there is no consensus on the degree to which plantplant interactions change predictably along environmental gradients (i.e. the stress-gradient hypothesis), and this hinders our ability to predict how plantplant interactions may affect the response of plant communities to ongoing global environmental change. The existing controversies regarding the response of plantplant interactions across environmental gradients can be reconciled when clearly considering and determining the species-specificity of the response, the functional or individual stress type, and the scale of interest (pairwise interactions or community-level response). Here, we introduce a theoretical framework to do this, supported by multiple lines of empirical evidence. We also discuss current gaps in our knowledge regarding how plantplant interactions change along environmental gradients. These include the existence of thresholds in the amount of species-specific stress that a benefactor can alleviate, the linearity or non-linearity of the response of pairwise interactions across distance from the ecological optimum of the beneficiary, and the need to explore further how frequent interactions among multiple species are and how they change across different environments. We review the latest advances in these topics and provide new approaches to fill current gaps in our knowledge. We also apply our theoretical framework to advance our knowledge on the evolutionary aspects of plant facilitation, and the relative importance of facilitation, in comparison with other ecological processes, for maintaining ecosystem structure, functioning and dynamics. We build links between these topics and related fields, such as ecological restoration, woody encroachment, invasion ecology, ecological modelling and biodiversity–ecosystem-functioning relationships. By identifying commonalities and insights from alternative lines of research, we further advance our understanding of facilitation and provide testable hypotheses regarding the role of (positive) biotic interactions in the maintenance of biodiversity and the response of ecological communities to ongoing environmental changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Some introduced invasive species may be competitively superior to natives because they release allelochemicals, which negatively affect native species. Allelochemicals can be immediately effective after being released but can also persist in soils, resulting in a legacy effect. However, to our knowledge there are no studies which distinguish between allelopathic legacy and immediate allelopathy of invasive species and also test for their relative importance and possible interdependence. We used eleven invasive species and tested whether they show immediate allelopathy and allelopathic legacy effects in a factorial pairwise competition experiment using field-collected soil (invaded/non-invaded) and activated carbon to neutralize allelochemicals. We grew two native and the invasive species in both monocultures and pairwise mixtures. In monocultures, the native species did not experience an allelopathic legacy effect of the invasives, suggesting that invaders generally lack persistent allelochemicals. However, the effects of invader allelochemicals were modulated by competitive interactions. In competition, immediate allelopathy decreased competitive ability of natives, while allelopathic legacy positively affected the natives. Moreover, immediate allelopathic and allelopathic legacy effects were strongly negatively correlated. Our results suggest that both immediately released allelochemicals and the allelochemical legacy of invasive species are important for plant performance under natural conditions, and that natives should be able to recover once the invaders are removed. To test whether immediate allelopathy is responsible for plant invasion success, further studies should compare allelopathic effects between invasive and closely related native species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of montane and subalpine hay meadow plant and arthropod communities to the application of liquid manure and aerial irrigation – two novel, rapidly spreading management practices – remains poorly understood, which hampers the formulation of best practice management recommendations for both hay production and biodiversity preservation. In these nutrient-poor mountain grasslands, a moderate management regime could enhance overall conditions for biodiversity. This study experimentally assessed, at the site scale, among low-input montane and subalpine meadows, the short-term effects (1 year) of a moderate intensification (slurry fertilization: 26.7–53.3 kg N·ha−1·year−1; irrigation with sprinklers: 20 mm·week−1; singly or combined together) on plant species richness, vegetation structure, hay production, and arthropod abundance and biomass in the inner European Alps (Valais, SW Switzerland). Results show that (1) montane and subalpine hay meadow ecological communities respond very rapidly to an intensification of management practices; (2) on a short-term basis, a moderate intensification of very low-input hay meadows has positive effects on plant species richness, vegetation structure, hay production, and arthropod abundance and biomass; (3) vegetation structure is likely to be the key factor limiting arthropod abundance and biomass. Our ongoing experiments will in the longer term identify which level of management intensity achieves an optimal balance between biodiversity and hay production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 We used simulated and experimental plant populations to analyse mortality-driven pattern formation under size-dependent competition. Larger plants had an advantage under size-asymmetric but not under symmetric competition. Initial patterns were random or clumped. 2 The simulations were individual-based and spatially explicit. Size-dependent competition was modelled with different rules to partition overlapping zones of influence. 3 The experiment used genotypes of Arabidopsis thaliana with different morphological plasticity and hence size-dependent competition. Compared with wild types, transgenic individuals over-expressed phytochrome A and had decreased plasticity because of disabled phytochrome-mediated shade avoidance. Therefore, competition among transgenics was more asymmetric compared with wild-types. 4 Density-dependent mortality under symmetric competition did not substantially change the initial spatial pattern. Conversely, simulations under asymmetric competition and experimental patterns of transgenic over-expressors showed patterns of survivors that deviated substantially from random mortality independent of initial patterns. 5 Small-scale initial patterns of wild types were regular rather than random or clumped. We hypothesize that this small-scale regularity may be explained by early shade avoidance of seedlings in their cotyledon stage. 6 Our experimental results support predictions from an individual-based simulation model and support the conclusion that regular spatial patterns of surviving individuals should be interpreted as evidence for strong, asymmetric competitive interactions and subsequent density-dependent mortality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Land-use intensification is a key driver of biodiversity change. However, little is known about how it alters relationships between the diversities of different taxonomic groups, which are often correlated due to shared environmental drivers and trophic interactions. Using data from 150 grassland sites, we examined how land-use intensification (increased fertilization, higher livestock densities, and increased mowing frequency) altered correlations between the species richness of 15 plant, invertebrate, and vertebrate taxa. We found that 54% of pairwise correlations between taxonomic groups were significant and positive among all grasslands, while only one was negative. Higher land-use intensity substantially weakened these correlations (35% decrease in r and 43% fewer significant pairwise correlations at high intensity), a pattern which may emerge as a result of biodiversity declines and the breakdown of specialized relationships in these conditions. Nevertheless, some groups (Coleoptera, Heteroptera, Hymenoptera and Orthoptera) were consistently correlated with multidiversity, an aggregate measure of total biodiversity comprised of the standardized diversities of multiple taxa, at both high and low land-use intensity. The form of intensification was also important; increased fertilization and mowing frequency typically weakened plantplant and plant–primary consumer correlations, whereas grazing intensification did not. This may reflect decreased habitat heterogeneity under mowing and fertilization and increased habitat heterogeneity under grazing. While these results urge caution in using certain taxonomic groups to monitor impacts of agricultural management on biodiversity, they also suggest that the diversities of some groups are reasonably robust indicators of total biodiversity across a range of conditions. Read More: http://www.esajournals.org/doi/10.1890/14-1307.1