70 resultados para Photon asymmetry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Modulated electron radiotherapy (MERT) promises sparing of organs at risk for certain tumor sites. Any implementation of MERT treatment planning requires an accurate beam model. The aim of this work is the development of a beam model which reconstructs electron fields shaped using the Millennium photon multileaf collimator (MLC) (Varian Medical Systems, Inc., Palo Alto, CA) for a Varian linear accelerator (linac). METHODS This beam model is divided into an analytical part (two photon and two electron sources) and a Monte Carlo (MC) transport through the MLC. For dose calculation purposes the beam model has been coupled with a macro MC dose calculation algorithm. The commissioning process requires a set of measurements and precalculated MC input. The beam model has been commissioned at a source to surface distance of 70 cm for a Clinac 23EX (Varian Medical Systems, Inc., Palo Alto, CA) and a TrueBeam linac (Varian Medical Systems, Inc., Palo Alto, CA). For validation purposes, measured and calculated depth dose curves and dose profiles are compared for four different MLC shaped electron fields and all available energies. Furthermore, a measured two-dimensional dose distribution for patched segments consisting of three 18 MeV segments, three 12 MeV segments, and a 9 MeV segment is compared with corresponding dose calculations. Finally, measured and calculated two-dimensional dose distributions are compared for a circular segment encompassed with a C-shaped segment. RESULTS For 15 × 34, 5 × 5, and 2 × 2 cm(2) fields differences between water phantom measurements and calculations using the beam model coupled with the macro MC dose calculation algorithm are generally within 2% of the maximal dose value or 2 mm distance to agreement (DTA) for all electron beam energies. For a more complex MLC pattern, differences between measurements and calculations are generally within 3% of the maximal dose value or 3 mm DTA for all electron beam energies. For the two-dimensional dose comparisons, the differences between calculations and measurements are generally within 2% of the maximal dose value or 2 mm DTA. CONCLUSIONS The results of the dose comparisons suggest that the developed beam model is suitable to accurately reconstruct photon MLC shaped electron beams for a Clinac 23EX and a TrueBeam linac. Hence, in future work the beam model will be utilized to investigate the possibilities of MERT using the photon MLC to shape electron beams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on analyticity, unitarity, and Lorentz invariance the contribution from hadronic vacuum polarization to the anomalous magnetic moment of the muon is directly related to the cross section of e+e− → hadrons. We review the main difficulties that impede such an approach for light-by-light scattering and identify the required ingredients from experiment. Amongst those, the most critical one is the scattering of two virtual photons into meson pairs. We analyze the analytic structure of the process γ*γ* → ππ and show that the usual Muskhelishvili–Omnès representation can be amended in such a way as to remain valid even in the presence of anomalous thresholds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb−1 of LHC proton–proton collision data taken at centre-of-mass energies of √s = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative inaccuracy of less than 10% for electrons and photons up to 60 GeV transverse energy, rising to 40% for transverse energies above 500 GeV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A measurement of the parity-violating decay asymmetry parameter, αb , and the helicity amplitudes for the decay Λ 0 b →J/ψ(μ + μ − )Λ 0 (pπ − ) is reported. The analysis is based on 1400 Λ 0 b and Λ ¯ 0 b baryons selected in 4.6  fb −1 of proton–proton collision data with a center-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. By combining the Λ 0 b and Λ ¯ 0 b samples under the assumption of CP conservation, the value of α b is measured to be 0.30±0.16(stat)±0.06(syst) . This measurement provides a test of theoretical models based on perturbative QCD or heavy-quark effective theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A search is reported for a neutral Higgs boson in the decay channel H → Zγ, Z → ℓ+ℓ− (ℓ = e, μ), using 4.5 fb−1 of pp collisions at √s = 7 TeV and 20.3 fb−1 of pp collisions at √s = 8 TeV, recorded by the ATLAS detector at the CERN Large Hadron Collider. The observed distribution of the invariantmass of the three final-state particles, mℓℓγ, is consistent with the Standard Model hypothesis in the investigated mass range of 120–150 GeV. For a Higgs boson with a mass of 125.5 GeV, the observed upper limit at the 95% confidence level is 11 times the Standard Model expectation. Upper limits are set on the cross section times branching ratio of a neutral Higgs boson with mass in the range 120–150 GeV between 0.13 and 0.5 pb for √s = 8 TeV at 95% confidence level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Psychomotor disturbances are a main clinical feature of major depressive disorder (MDD) but little is known about their EEG signature. One of the most replicated EEG findings in MDD is resting frontal asymmetry in the alpha band (FAA), which is thought to be a correlate of withdrawal behavior and reduced approach motivation. The purpose of this study was to assess psychomotor alterations, alpha band power, FAA and investigate the association between them. METHODS 20 MDD patients and 19 healthy subjects were enrolled. Alpha power and FAA scores were calculated from a resting state EEG. Wrist actigraphy was recorded from the non-dominant arm for 24 h and activity level scores (AL) were extrapolated from the wakeful periods. RESULTS MDD patients had a left-lateralized frontal alpha activity and lower AL scores when compared to healthy subjects. A significant correlation was found between mean FAA and AL scores. A negative covariance between power in the lower alpha range and AL scores over the motor cortex bilaterally was detected. LIMITATIONS Relatively small sample size. Patients were pharmacologically treated with antidepressants. CONCLUSIONS This study replicates the finding of left-lateralized FAA and lower AL scores in MDD patients, and establishes the first evidence of significant correlations between alpha power, FAA scores and measures of motor activity, which may be interpreted as an expression of impaired motivational drive in MDD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual exploration of natural scenes imposes demands that differ between the upper and the lower visual hemifield. Yet little is known about how ocular motor performance is affected by the location of visual stimuli or the direction of a behavioural response. We compared saccadic latencies between upper and lower hemifield in a variety of conditions, including short-latency prosaccades, long-latency prosaccades, antisaccades, memory-guided sac- cades and saccades with increased attentional and selection demand. All saccade types, except memory guided saccades, had shorter latencies when saccades were directed to- wards the upper field as compared to downward saccades (p<0.05). This upper field reaction time advantage probably arises in ocular motor rather than visual processing. It may originate in structures involved in motor preparation rather than execution.