90 resultados para Pc-12 Cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sampling and analyzing new families with inherited blood disorders are major steps contributing to the identification of gene(s) responsible for normal and pathologic hematopoiesis. Familial occurrences of hematological disorders alone, or as part of a syndromic disease, have been reported, and for some the underlying genetic mutation has been identified. Here we describe a new autosomal dominant inherited phenotype of thrombocytopenia and red cell macrocytosis in a four-generation pedigree. Interestingly, in the youngest generation, a 2-year-old boy presenting with these familial features has developed acute lymphoblastic leukemia characterized by a t(12;21) translocation. Tri-lineage involvement of platelets, red cells and white cells may suggest a genetic defect in an early multiliear progenitor or a stem cell. Functional assays in EBV-transformed cell lines revealed a defect in cell proliferation and tubulin dynamics. Two candidate genes, RUNX1 and FOG1, were sequenced but no pathogenic mutation was found. Identification of the underlying genetic defect(s) in this family may help in understanding the complex process of hematopoiesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucocorticoids are anti-inflammatory steroids with important applications in the treatment of inflammatory diseases. Endogenous glucocorticoids are mainly produced by the adrenal glands, although there is increasing evidence for extra-adrenal sources. Recent findings show that intestinal crypt cells produce glucocorticoids, which contribute to the maintenance of intestinal immune homeostasis. Intestinal glucocorticoid synthesis is critically regulated by the transcription factor liver receptor homologue-1 (LRH-1). As expression of steroidogenic enzymes and LRH-1 is restricted to the proliferating cells of the crypts, we aimed to investigate the role of the cell cycle in the regulation of LRH-1 activity and intestinal glucocorticoid synthesis. We here show that either pharmacological or molecular modulation of cell cycle progression significantly inhibited expression of steroidogenic enzymes and synthesis of glucocorticoids in intestinal epithelial cells. Synchronization of intestinal epithelial cells in the cell cycle revealed that expression of steroidogenic enzymes is preferentially induced at the G(1)/S stage. Differentiation of immature intestinal epithelial cells to mature nonproliferating cells also resulted in reduced expression of steroidogenic enzymes. This cell cycle-related effect on intestinal steroidogenesis was found to be mediated through the regulation of LRH-1 transcriptional activity. This mechanism may restrict intestinal glucocorticoid synthesis to the proliferating cells of the crypts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osseointegration of titanium dental implants into the jaw bone, which is required for maintenance of the implant in the jaw, results in ankylosis. Dental implants are therefore very unlike natural teeth, which exhibit significant movement in response to mechanical forces. The ability to generate periodontal ligament (PDL) tissues onto dental implants would better mimic the functional characteristics of natural teeth, and would likely improve implant duration and function. OBJECTIVES: The objective of this study was to investigate the feasibility of bioengineering PDL tissues onto titanium implant surfaces. METHODS: Bilateral maxillary first and second molars of 8-week old rats were extracted and used to generate single cell suspensions of PDL tissues, which were expanded in culture. Immunohistochemistry and RT-PCR were used to identify putative PDL progenitor/stem cell populations and characterize stem cell properties, including self-renewal, multipotency and stem cell maker expression. Cultured rPDL cells were harvested at third passage, seeded onto Matrigel-coated titanium implants (1.75 mm x 1 mm), and placed into healed M1/M2 extraction sites. Non-cell seeded Matrigel-coated titanium implants served as negative controls. Implants were harvested after 8, 12, or 18 weeks. RESULTS: Cultured rPDL cells expressed the mesenchymal stem-cell marker STRO-1. Under defined culture conditions, PDL cells differentiated into adipogenic, neurogenic and osteogenic lineages. While control implants were largely surrounded by alveolar bone, experimental samples exhibited fibrous PDL-like tissues, and perhaps cementum, on the surface of experimental implants. CONCLUSIONS: PDL contains stem cells that can generate cementum/PDL-like tissue in vivo. Transplantation of these cells might hold promise as a therapeutic approach for the bioengineering of PDL tissues onto titanium implant. Further refinement of this method will likely result in improved dental implant strategies for use of autologous PDL tissue regeneration in humans. This research was supported by CIMIT, and NIH/NIDCR grant DE016132 (PCY), and TEACRS (YL).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: In a prospective study we investigated whether numerical and functional changes of CD4+CD25(high) regulatory T cells (Treg) were associated with changes of disease activity observed during pregnancy and post partum in patients with rheumatoid arthritis (RA). METHODS: The frequency of CD4+CD25(high) T cells was determined by flow cytometry in 12 patients with RA and 14 healthy women during and after pregnancy. Fluorescence-activated cell sorting (FACS) was used to sort CD4+CD25(high) T cells and CD4+CD25- T cells were stimulated with anti-CD3 and anti-CD28 monoclonal antibodies alone or in co-culture to investigate proliferation and cytokine secretion. RESULTS: Frequencies of CD4+CD25(high) Treg were significantly higher in the third trimester compared to 8 weeks post partum in patients and controls. Numbers of CD4+CD25(high) Treg inversely correlated with disease activity in the third trimester and post partum. In co-culture experiments significantly higher amounts of IL10 and lowered levels of tumour necrosis factor (TNF)alpha and interferon (IFN)gamma were found in supernatants of the third trimester compared to postpartum samples. These findings were independent from health or disease in pregnancy, however postpartum TNFalpha and IFN gamma levels were higher in patients with disease flares. CONCLUSION: The amelioration of disease activity in the third trimester corresponded to the increased number of Treg that induced a pronounced anti-inflammatory cytokine milieu. The pregnancy related quantitative and qualitative changes of Treg suggest a beneficial effect of Treg on disease activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By applying high pressure freezing and freeze-substitution, we observed large inclusions of homogeneous appearance in the front of locomoting Walker carcinosarcoma cells that have not been described earlier. Live cell imaging revealed that these inclusions were poor in lipids and nucleic acids but had a high lysine (and hence protein) content. Usually one such structure 2-5 mum in size was present at the front of motile Walker cells, predominantly in the immediate vicinity of newly forming blebs. By correlating the lysine-rich areas in fixed and embedded cells with electron microscopic pictures, inclusions could be assigned to confined, faintly stained cytoplasmic areas that lacked a surrounding membrane; they were therefore called pseudovacuoles. After high-pressure freezing and freeze substitution, pseudovacuoles appeared to be filled with 20 nm large electron-transparent patches surrounded by 12 and 15 nm large particles. The heat shock protein Hsp90 was identified by peptide sequencing as a major fluorescent band on SDS-PAGE of lysine-labelled Walker cell extracts. By immunofluorescence, Hsp90 was found to be enriched in pseudovacuoles. Colocalization of the lysine with a potassium-specific dye in living cells revealed that pseudovacuoles act as K+ stores in the vicinity of forming blebs. We propose that pseudovacuoles might support blebbing by locally regulating the intracellular hydrostatic pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: T cells play a key role in delayed-type drug hypersensitivity reactions. Their reactivity can be assessed by their proliferation in response to the drug in the lymphocyte transformation test (LTT). However, the LTT imposes limitations in terms of practicability, and an alternative method that is easier to implement than the LTT would be desirable. METHODS: Four months to 12 years after acute drug hypersensitivity reactions, CD69 upregulation on T cells of 15 patients and five healthy controls was analyzed by flow cytometry. RESULTS: All 15 LTT-positive patients showed a significant increase of CD69 expression on T cells after 48 h of drug-stimulation exclusively with the drugs incriminated in drug-hypersensitivities. A stimulation index of 2 as cut-off value allowed discrimination between nonreactive and reactive T cells in LTT and CD69 upregulation. T cells (0.5-3%) showed CD69 up-regulation. The reactive cell population consisted of a minority of truly drug reactive T cells secreting cytokines and a higher number of bystander T cells activated by IL-2 and possibly other cytokines. CONCLUSIONS: CD69 upregulation was observed after 2 days in all patients with a positive LTT after 6 days, thus appearing to be a promising tool to identify drug-reactive T cells in the peripheral blood of patients with drug-hypersensitivity reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ventral mesencephalic (VM) precursor cells are of interest in the search for transplantable dopaminergic neurons for cell therapy in Parkinson's disease (PD). In the present study we investigated the survival and functional capacity of in vitro expanded, primary VM precursor cells after intrastriatal grafting to a rat model of PD. Embryonic day 12 rat VM tissue was mechanically dissociated and cultured for 4 or 8 days in vitro (DIV) in the presence of FGF2 (20 ng/ml), FGF8 (20 ng/ml) or without mitogens (control). Cells were thereafter differentiated for 6 DIV by mitogen withdrawal and addition of serum. After differentiation, significantly more tyrosine hydroxylase-immunoreactive (TH-ir), dopamine-producing neurons were found in FGF2- and FGF8-expanded cultures compared to controls. Moreover, expansion for 4 DIV resulted in significantly more TH-ir cells than expansion for 8 DIV both for FGF2 (2.4 fold; P<0.001) and FGF8 (3.8 fold; P<0.001) treated cultures. The functional potential of the expanded cells (4 DIV) was examined after grafting into striatum of aged 6-hydroxydopamine-lesioned rats. Amphetamine-induced rotations performed 3, 6 and 9 weeks postgrafting revealed that grafts of FGF2-expanded cells induced a significantly faster and better functional recovery than grafts of FGF8-expanded cells or control cells (P<0.05 for both). Grafts of FGF2-expanded cells also contained significantly more TH-ir cells than grafts of FGF8-expanded cells (P<0.05) or control cells (P<0.01). In conclusion, FGF2-mediated pregrafting expansion of primary VM precursor cells considerably improves dopaminergic cell survival and functional restoration in a rat model of PD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: MHC-I down-regulation was described in foetal liver progenitors, and two different subsets of adult bone marrow derived stem cells. These cells, namely, MHC-I-/Thy1+ bone marrow derived liver stem cells (BMDLSC) and the multipotent adult progenitors (MAPC) differentiated into functioning hepatocytes. The aim of this paper was to characterize the MHC-I negative bone marrow compartment as it pertains to BMDLSC and MAPC. MATERIAL/METHODS: We performed multiparameter flow-cytometry analyses of the MHC-I negative compartment using hematopoietic (CD45, Ter119), and stem cell markers (Thy1.2, c-Kit, IL-3R, CD34) in adult mice. RESULTS: When analysing CD45 and Ter119 expression, the MHC-I negative bone marrow compartment divides into four sub-populations: 1. CD45-/Ter119+: 86.0+/-4.4%; 2. CD45+/Ter119+: 0.2+/-0.1%; 3. CD45+/Ter119-: 11.6+/-3.0%; 4. CD45-/Ter119-: 2.0+/-2.1%. Stem cells markers were only expressed on MHC-I negative/ CD45+/Ter119- cells. In vivo, MAPC (Ter119-/CD45- cells) are composed of MHC-I negative (24%) and MHC-I positive cells and do not express any of the stem cell markers tested. CONCLUSIONS: In conclusion, mouse BMDLSC and MAPC are two distinct stem cell populations. Down-regulation of MHC-I was the only common characteristic found between BMDLSC and MAPC suggesting that selection of MHC-I negative cells might represent an efficient strategy to enrich for bone marrow stem cells with liver developmental potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of these studies was to investigate whether insulin resistance is primary to skeletal muscle. Myoblasts were isolated from muscle biopsies of 8 lean insulin-resistant and 8 carefully matched insulin-sensitive subjects (metabolic clearance rates as determined by euglycemic-hyperinsulinemic clamp: 5.8 +/- 0.5 vs. 12.3 +/- 1.7 ml x kg(-1) x min(-1), respectively; P < or = 0.05) and differentiated to myotubes. In these cells, insulin stimulation of glucose uptake, glycogen synthesis, insulin receptor (IR) kinase activity, and insulin receptor substrate 1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity were measured. Furthermore, insulin activation of protein kinase B (PKB) was compared with immunoblotting of serine residues at position 473. Basal glucose uptake (1.05 +/- 0.07 vs. 0.95 +/- 0.07 relative units, respectively; P = 0.49) and basal glycogen synthesis (1.02 +/- 0.11 vs. 0.98 +/- 0.11 relative units, respectively; P = 0.89) were not different in myotubes from insulin-resistant and insulin-sensitive subjects. Maximal insulin responsiveness of glucose uptake (1.35 +/- 0.03-fold vs. 1.41 +/- 0.05-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.43) and glycogen synthesis (2.00 +/- 0.13-fold vs. 2.10 +/- 0.16-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.66) were also not different. Insulin stimulation (1 nmol/l) of IR kinase and PI 3-kinase were maximal within 5 min (approximately 8- and 5-fold over basal, respectively), and insulin activation of PKB was maximal within 15 min (approximately 3.5-fold over basal). These time kinetics were not significantly different between groups. In summary, our data show that insulin action and signaling in cultured skeletal muscle cells from normoglycemic lean insulin-resistant subjects is not different from that in cells from insulin-sensitive subjects. This suggests an important role of environmental factors in the development of insulin resistance in skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Donor-specific transfusions (DST) induce allograft tolerance in animals. Evidence is growing that FoxP3+ regulatory T cells are associated with tolerance in humans. Forty-four biopsies from 69 living donor kidney transplant recipients (LDT) after DST, 53 biopsies from 69 matched deceased donor transplant recipients (DDT), obtained for graft dysfunction, and 12 biopsies from LDT without DST were retrospectively analyzed. FoxP3 positivity was more frequent in LDT/DST than in DDT biopsies (67% vs. 44%, P=0.02). Considering only biopsies with acute rejection, FoxP3 positivity was observed in 92% (11/12) after LDT/DST, but only in 50% (6/12) after DDT (P=0.03). The number of FoxP3+ T cells per total infiltrating cells in rejection biopsies was higher (P<0.05) from LDT/DST (4.1%) than from DDT or LDT (2.6%) without DST (2.5%). Six-year graft survival was better in patients with LDT/DST than with DDT (87.5% vs. 79.7%, P=0.04). The present investigation demonstrates an association between DST and FoxP3+ T cells. The effect of DST on regulatory T cells deserves further analysis in transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anti-human leukocyte antigen class I (HLA I) antibodies were shown to activate several protein kinases in endothelial cells (ECs), which induces proliferation and cell survival. An important phenomenon in antibody-mediated rejection is the occurrence of interstitial edema. We investigated the effect of anti-HLA I antibodies on endothelial proliferation and permeability, as one possible underlying mechanism of edema formation. HLA I antibodies increased the permeability of cultured ECs isolated from umbilical veins. Anti-HLA I antibodies induced the production of vascular endothelial growth factor (VEGF) by ECs, which activated VEGF receptor 2 (VEGFR2) in an autocrine manner. Activated VEGFR2 led to a c-Src-dependent phosphorylation of vascular endothelial (VE)-cadherin and its degradation. Aberrant VE-cadherin expression resulted in impaired adherens junctions, which might lead to increased endothelial permeability. This effect was only observed after cross-linking of HLA I molecules by intact antibodies. Furthermore, our results suggest that increased endothelial proliferation following anti-HLA I treatment occurs via autocrine VEGFR2 activation. Our data indicate the ability of anti-HLA I to induce VEGF production in ECs. Transactivation of VEGFR2 leads to increased EC proliferation and paracellular permeability. The autocrine effect of VEGF on endothelial permeability might be an explanation for the formation of interstitial edema after transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FOXP3-expressing naturally occurring CD4(+)CD25(high) T regulatory cells (Treg) are relevant in the control of autoimmunity, and a defect in this cell population has been observed in several human autoimmune diseases. We hypothesized that altered functions of peripheral Treg cells might play a role in the immunopathogenesis of myasthenia gravis, a T cell-dependent autoimmune disease characterized by the presence of pathogenic autoantibodies specific for the nicotinic acetylcholine receptor. We report in this study a significant decrease in the in vitro suppressive function of peripheral Treg cells isolated from myasthenia patients in comparison to those from healthy donors. Interestingly, Treg cells from prednisolone-treated myasthenia gravis patients showed an improved suppressive function compared with untreated patients, suggesting that prednisolone may play a role in the control of the peripheral regulatory network. Indeed, prednisolone treatment prevents LPS-induced maturation of monocyte-derived dendritic cells by hampering the up-regulation of costimulatory molecules and by limiting secretion of IL-12 and IL-23, and enhancing IL-10. In addition, CD4(+) T cells cultured in the presence of such tolerogenic dendritic cells are hyporesponsive and can suppress autologous CD4(+) T cell proliferation. The results shown in this study indicate that prednisolone treatment promotes an environment that favors immune regulation rather than inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autophagy is a conserved proteolytic mechanism that degrades cytoplasmic material including cell organelles. The importance of autophagy for cell homeostasis and survival has long been appreciated. Recent data suggest that autophagy is also involved in non-metabolic functions that particularly concern blood cells. Here, we review these findings, which point to an important role of autophagy in several cellular functions related to host defense.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phagocytosis of fine particles (1 mum) by macrophages is a ligand-receptor-mediated, actin-based process, whereas the entering of smaller particles (cells, in particular penetration into monocyte-derived macrophages. The microscopic analysis of phagocytic cells incubated with virosomes and polystyrene particles showed that virosomes and particles penetrated cells even in the presence of cytochalasin D, a drug inhibiting actin-based phagocytosis. The charge of the virosomes and particles did not influence their penetration. Also, different inhibitors of endocytotic pathways did not prevent the particles and virosomes from penetrating into the cells. Additionally, to study the ability of virosomes to overcome the epithelial airway barrier, a triple cell co-culture model composed of epithelial cells, monocyte-derived macrophages and dendritic cells of the respiratory tract was used. We found virosomes and polystyrene particles in both populations of antigen-presenting cells, monocyte-derived macrophages, and dendritic cells, in the latter even if they were not directly exposed. In conclusion, virosomes are readily taken up by monocyte-derived macrophages, both by conventional phagocytosis and by actin-independent mechanisms. Further, they can penetrate the airway barrier and reach resident dendritic cells. Therefore, virosomes are promising vaccine candidates.