71 resultados para PRECIPITATION (Meteorology)
Resumo:
Century-long observed gridded land precipitation datasets are a cornerstone of hydrometeorological research. But recent work has suggested that observed Northern Hemisphere midlatitude (NHML) land mean precipitation does not show evidence of an expected negative response to mid-twentieth-century aerosol forcing. Utilizing observed river discharges, the observed runoff is calculated and compared with observed land precipitation. The results show a near-zero twentieth-century trendinobserved NHML landmean runoff,in contrast to the significant positive trend in observed NHML land mean precipitation. However, precipitation and runoff share common interannual and decadal variability. An obvious split, or breakpoint, is found in the NHML land mean runoff–precipitation relationship in the 1930s. Using runoff simulated by six land surface models (LSMs), which are driven by the observed precipitation dataset, such breakpoints are absent. These findings support previous hypotheses that inhomogeneities exist in the early-twentieth-century NHML land mean precipitation record. Adjusting the observed precipitation record according to the observed runoff record largely accounts for the departure of the observed precipitation response from that predicted given the real-world aerosol forcing estimate, more than halving the discrepancy from about 6 to around 2 W m 22. Consideration of complementary observed runoff adds support to the suggestion that NHML-wide early-twentieth-century precipitation observations are unsuitable for climate change studies. The agreement between precipitation and runoff over Europe, however, is excellent, supporting the use of whole-twentieth-century observed precipitation datasets here.
Resumo:
We present a barium (Ba) isotope fractionation study of marine biogenic carbonates (aragonitic corals). The major aim is to provide first constraints on the Ba isotope fractionation between modern surface sea water and coral skele- ton. Mediterranean surface sea water was found to be enriched in the heavy Ba isotopes compared to previously reported values for marine open ocean authi- genic and terrestrial minerals. In aquarium experiments with a continuous sup- ply of Mediterranean surface water, the Ba isotopic composition of the bulk sample originating from cultured, aragonitic scleractinian corals (d137/134Ba between +0.16 +/- 0.12permil and +0.41 +/-0.12permil) were isotopically identical or lighter than that of the ambient Mediterranean surface sea water (d137/134Ba = +0.42 +/- 0.07permil, 2SD), which corresponds to an empirical maximum value of Ba isotope fractionation of D137/134Bacoral-seawater = -0.26 +/- 0.14permil at 25°C. This maximum Ba isotope fractionation is close and identical in direction to previous results from inorganic precipitation experiments with aragonite- structured pure BaCO3 (witherite). The variability in measured Ba concentrations of the cultured corals is at odds with a uniform distribution coefficient, DBa/Ca, thus indicating stronger vital effects on isotope than element discrimination. This observation supports the hypothesis that the Ba isotopic compositions of these corals do not result from simple equilibrium between the skeleton and the bulk sea water. Complementary coral samples from natural settings (tropical shallow-water corals from the Bahamas and Florida and cold- water corals from the Norwegian continental shelf) show an even wider range in d137/134Ba values (+0.14 +/- 0.08permil and +0.77 +/- 0.11permil), most probably due to additional spatial and/or temporal sea water heterogeneity, as indicated by recent publications.
Resumo:
The evolution of porosity due to dissolution/precipitation processes of minerals and the associated change of transport parameters are of major interest for natural geological environments and engineered underground structures. We designed a reproducible and fast to conduct 2D experiment, which is flexible enough to investigate several process couplings implemented in the numerical code OpenGeosys-GEM (OGS-GEM). We investigated advective-diffusive transport of solutes, effect of liquid phase density on advective transport, and kinetically controlled dissolution/precipitation reactions causing porosity changes. In addition, the system allowed to investigate the influence of microscopic (pore scale) processes on macroscopic (continuum scale) transport. A Plexiglas tank of dimension 10 × 10 cm was filled with a 1 cm thick reactive layer consisting of a bimodal grain size distribution of celestite (SrSO4) crystals, sandwiched between two layers of sand. A barium chloride solution was injected into the tank causing an asymmetric flow field to develop. As the barium chloride reached the celestite region, dissolution of celestite was initiated and barite precipitated. Due to the higher molar volume of barite, its precipitation caused a porosity decrease and thus also a decrease in the permeability of the porous medium. The change of flow in space and time was observed via injection of conservative tracers and analysis of effluents. In addition, an extensive post-mortem analysis of the reacted medium was conducted. We could successfully model the flow (with and without fluid density effects) and the transport of conservative tracers with a (continuum scale) reactive transport model. The prediction of the reactive experiments initially failed. Only the inclusion of information from post-mortem analysis gave a satisfactory match for the case where the flow field changed due to dissolution/precipitation reactions. We concentrated on the refinement of post-mortem analysis and the investigation of the dissolution/precipitation mechanisms at the pore scale. Our analytical techniques combined scanning electron microscopy (SEM) and synchrotron X-ray micro-diffraction/micro-fluorescence performed at the XAS beamline (Swiss Light Source). The newly formed phases include an epitaxial growth of barite micro-crystals on large celestite crystals (epitaxial growth) and a nano-crystalline barite phase (resulting from the dissolution of small celestite crystals) with residues of celestite crystals in the pore interstices. Classical nucleation theory, using well-established and estimated parameters describing barite precipitation, was applied to explain the mineralogical changes occurring in our system. Our pore scale investigation showed limits of the continuum scale reactive transport model. Although kinetic effects were implemented by fixing two distinct rates for the dissolution of large and small celestite crystals, instantaneous precipitation of barite was assumed as soon as oversaturation occurred. Precipitation kinetics, passivation of large celestite crystals and metastability of supersaturated solutions, i.e. the conditions under which nucleation cannot occur despite high supersaturation, were neglected. These results will be used to develop a pore scale model that describes precipitation and dissolution of crystals at the pore scale for various transport and chemical conditions. Pore scale modelling can be used to parameterize constitutive equations to introduce pore-scale corrections into macroscopic (continuum) reactive transport models. Microscopic understanding of the system is fundamental for modelling from the pore to the continuum scale.
Resumo:
Land and water management in semi-arid regions requires detailed information on precipitation distribution, including extremes, and changes therein. Such information is often lacking. This paper describes statistics of mean and extreme precipitation in a unique data set from the Mount Kenya region, encompassing around 50 stations with at least 30 years of data. We describe the data set, including quality control procedures and statistical break detection. Trends in mean precipitation and extreme indices calculated from these data for individual rainy seasons are compared with corresponding trends in reanalysis products. From 1979 to 2011, mean precipitation decreased at 75% of the stations during the ‘long rains’ (March to May) and increased at 70% of the stations during the ‘short rains’ (October to December). Corresponding trends are found in the number of heavy precipitation days, and maximum of consecutive 5-day precipitation. Conversely, an increase in consecutive dry days within both main rainy seasons is found. However, trends are only statistically significant in very few cases. Reanalysis data sets agree with observations with respect to interannual variability, while correlations are considerably lower for monthly deviations (ratios) from the mean annual cycle. While some products well reproduce the rainfall climatology and some the spatial trend pattern, no product reproduces both.
Resumo:
In equatorial regions, where tree rings are less distinct or even absent, the response of forests to high-frequency climate variability is poorly understood. We measured stable carbon and oxygen isotopes in anatomically distinct, annual growth rings of four Pericopsis elata trees from a plantation in the Congo Basin, to assess their sensitivity to recorded changes in precipitation over the last 50 y. Our results suggest that oxygen isotopes have high common signal strength (EPS = 0.74), and respond to multi-annual precipitation variability at the regional scale, with low δ18O values (28–29‰) during wetter conditions (1960–1970). Conversely, δ13C are mostly related to growth variation, which in a light-demanding species are driven by competition for light. Differences in δ13C values between fast- and slow-growing trees (c. 2‰), result in low common signal strength (EPS = 0.37) and are driven by micro-site conditions rather than by climate. This study highlights the potential for understanding the causes of growth variation in P. elata as well as past hydroclimatic changes, in a climatically complex region characterized by a bimodal distribution in precipitation.
Resumo:
In order to better understand environmental factors controlling oxygen isotope shifts in autochthonous lacustrine carbonate sequences, we undertook an extensive one-year study (March, 1995 to February, 1996) of water-column chemistry and daily sediment trap material from a small lake in Central Switzerland. Comparisons between calculated equilibrium isotope values, using the fractionation equation of Friedman and O’Neil, (1977) and measured oxygen isotope ratios of calcite in the sediment-traps reveal that oxygen isotopic values of autochthonous calcite (δ18O) are in isotopic equilibrium with ambient water during most of the spring and summer, when the majority of the calcite precipitates. In contrast, small amounts of calcite precipitated in early-spring and again in late-autumn are isotopically depleted in 18O relative to the calculated equilibrium values, by as much as 0.8‰. This seasonally occurring apparent isotopic nonequilibrium is associated with times of high phosphorous concentrations, elevated pH (∼8.6) and increased [CO32−] (∼50 μmol/l) in the surface waters. The resulting weighted average δ18O value for the studied period is −9.6‰, compared with a calculated equilibrium δ18O value of −9.4‰. These data convincingly demonstrate that δ18O of calcite are, for the most part, a very reliable proxy for temperature and δ18O of the water.