78 resultados para PARASITE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myosin B (MyoB) is one of the two short class XIV myosins encoded in the Plasmodium genome. Class XIV myosins are characterized by a catalytic "head," a modified "neck," and the absence of a "tail" region. Myosin A (MyoA), the other class XIV myosin in Plasmodium, has been established as a component of the glideosome complex important in motility and cell invasion, but MyoB is not well characterized. We analyzed the properties of MyoB using three parasite species as follows: Plasmodium falciparum, Plasmodium berghei, and Plasmodium knowlesi. MyoB is expressed in all invasive stages (merozoites, ookinetes, and sporozoites) of the life cycle, and the protein is found in a discrete apical location in these polarized cells. In P. falciparum, MyoB is synthesized very late in schizogony/merogony, and its location in merozoites is distinct from, and anterior to, that of a range of known proteins present in the rhoptries, rhoptry neck or micronemes. Unlike MyoA, MyoB is not associated with glideosome complex proteins, including the MyoA light chain, myosin A tail domain-interacting protein (MTIP). A unique MyoB light chain (MLC-B) was identified that contains a calmodulin-like domain at the C terminus and an extended N-terminal region. MLC-B localizes to the same extreme apical pole in the cell as MyoB, and the two proteins form a complex. We propose that MLC-B is a MyoB-specific light chain, and for the short class XIV myosins that lack a tail region, the atypical myosin light chains may fulfill that role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the unicellular parasite Trypanosoma brucei, as in other eukaryotes, more than 95% of all mitochondrial proteins are imported from the cytosol. The recently characterized multisubunit ATOM complex, the functional analogue of the TOM complex of yeast, mediates import of essentially all proteins across the outer mitochondrial membrane in T. brucei. Moreover, an additional protein termed pATOM36, which is loosely associated with the ATOM complex, has been implicated in the import of only a subset of mitochondrial proteins. Here we have investigated more precisely which role pATOM36 plays in mitochondrial protein import. RNAi mediated ablation of pATOM36 specifically depletes a subset of outer mitochondrial membrane proteins including ATOM complex subunits and as a consequence results in the collapse of the ATOM complex as shown by Blue native PAGE. In addition, a SILAC-based global proteomic analysis of uninduced and induced pATOM36 RNAi cells together with in vitro import experiments suggest that pATOM36 might be a novel protein import factor acting on a subset of alpha-helically anchored mitochondrial outer membrane proteins. Identification of pATOM36 interaction partners by co-immunoprecipitation together with immunofluorescence analysis shows that unexpectedly a fraction of the protein is associated with the tripartite attachment complex (TAC). This complex is essential for proper inheritance of the mitochondrial DNA in T. brucei. It forms a physical connection between the single unit mitochondrial DNA and the basal body of the flagellum that is stable throughout the cell cycle. Thus, pATOM36 simultaneously mediates ATOM assembly, and thus protein import, as well as mitochondrial DNA inheritance since it is an essential component of the TAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Reactive oxygen species (ROS) protect the host against a large number of pathogenic microorganisms. ROS have different effects on parasites of the genus Leishmania: some parasites are susceptible to their action, while others seem to be resistant. The role of ROS in L. amazonensis infection in vivo has not been addressed to date. Methods: In this study, C57BL/6 wild-type mice (WT) and mice genetically deficient in ROS production by phagocytes (gp91phox−/− ) were infected with metacyclic promastigotes of L. amazonensis to address the effect of ROS in parasite control. Inflammatory cytokines, parasite loads and myeloperoxidase (MPO) activity were evaluated. In parallel, in vitro infection of peritoneal macrophages was assessed to determine parasite killing, cytokine, NO and ROS production. Results: In vitro results show induction of ROS production by infected peritoneal macrophages, but no effect in parasite killing. Also, ROS do not seem to be important to parasite killing in vivo, but they control lesion sizes at early stages of infection. IFN-γ, TNF-α and IL-10 production did not differ among mouse strains. Myeloperoxidase assay showed augmented neutrophils influx 6 h and 72 h post - infection in gp91phox−/− mice, indicating a larger inflammatory response in gp91phox−/− even at early time points. At later time points, neutrophil numbers in lesions correlated with lesion size: larger lesions in gp91phox−/− at earlier times of infection corresponded to larger neutrophil infiltrates, while larger lesions in WT mice at the later points of infection also displayed larger numbers of neutrophils. Conclusion: ROS do not seem to be important in L. amazonensis killing, but they regulate the inflammatory response probably by controlling neutrophils numbers in lesions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effects of oral treatments of Echinococcus multilocularis-infected mice with the antimalarial drug mefloquine (MEF) and identified proteins that bind to MEF in parasite extracts and human cells by affinity chromatography. In a pilot experiment, MEF treatment was applied 5 days per week and was intensified by increasing the dosage stepwise from 12.5 mg/kg to 200 mg/kg during 4 weeks followed by treatments of 100 mg/kg during the last 7 weeks. This resulted in a highly significant reduction of parasite weight in MEF-treated mice compared with mock-treated mice, but the reduction was significantly less efficacious compared with the standard treatment regimen of albendazole (ABZ). In a second experiment, MEF was applied orally in three different treatment groups at dosages of 25, 50 or 100 mg/kg, but only twice a week, for a period of 12 weeks. Treatment at 100 mg/kg had a profound impact on the parasite, similar to ABZ treatment at 200 mg/kg/day (5 days/week for 12 weeks). No adverse side effects were noted. To identify proteins in E. multilocularis metacestodes that physically interact with MEF, affinity chromatography of metacestode extracts was performed on MEF coupled to epoxy-activated Sepharose(®), followed by SDS-PAGE and in-gel digestion LC-MS/MS. This resulted in the identification of E. multilocularis ferritin and cystatin as MEF-binding proteins. In contrast, when human cells were exposed to MEF affinity chromatography, nicotinamide phosphoribosyltransferase was identified as a MEF-binding protein. This indicates that MEF could potentially interact with different proteins in parasites and human cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neospora caninum is considered one of the main causes of abortion in cattle, yet recent studies have also emphasised its relevance as an abortifacient in small ruminants. In order to gain deeper insight into the pathogenesis of ovine neosporosis, pregnant ewes were intravenously inoculated with 10(6) tachyzoites of the Nc-Spain7 isolate at days 40, 90 or 120 of gestation. Infection during the first term resulted in the death of all foetuses between days 19 and 21 post-infection, showing mainly necrotic lesions in foetal liver and the highest parasite DNA detection and burden in both placenta and foetal viscera. After infection at day 90, foetal death was also detected in all ewes, although later (34-48 days post-infection). In this group, lesions were mainly inflammatory. Foetal livers showed the lowest frequency of lesions, as well as the lowest parasite detection and burden. All ewes infected at day 120 delivered viable lambs, although 3 out of 9 showed weakness and recumbency. Neospora DNA was detected in all lambs but one, and parasite burden was similar to that observed in day 90 group. Lesions in this group showed more conspicuous infiltration of inflammatory cells and higher frequency in foetal brain and muscle when compared to both previous groups. These results highlight the crucial role that the stage of gestation plays on the course of ovine neosporosis, similar to that reported in bovine neosporosis, and open the doors to consider sheep as a valid model for exogenous transplacental transmission for ruminant neosporosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasites have evolved a plethora of strategies to ensure their survival. The intracellular parasite Theileria parva secures its propagation and spreads through the infected animal by infecting and transforming T cells, inducing their continuous proliferation and rendering them metastatic. In previous work, we have shown that the parasite induces constitutive activation of the transcription factor NF-kappaB, by inducing the constitutive degradation of its cytoplasmic inhibitors. The biological significance of NF-kappaB activation in T. parva-infected cells, however, has not yet been defined. Cells that have been transformed by viruses or oncogenes can persist only if they manage to avoid destruction by the apoptotic mechanisms that are activated on transformation and that contribute to maintain cellular homeostasis. We now demonstrate that parasite-induced NF-kappaB activation plays a crucial role in the survival of T. parva-transformed T cells by conveying protection against an apoptotic signal that accompanies parasite-mediated transformation. Consequently, inhibition of NF-kappaB nuclear translocation and the expression of dominant negative mutant forms of components of the NF-kappaB activation pathway, such as IkappaBalpha or p65, prompt rapid apoptosis of T. parva-transformed T cells. Our findings offer important insights into parasite survival strategies and demonstrate that parasite-induced constitutive NF-kappaB activation is an essential step in maintaining the transformed phenotype of the infected cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theileria parva-infected lymphoblastoid cell lines of T or B cell origin were examined for IL-2 mRNA expression. T. parva-infected T cell lines could be of the CD4-CD8-, CD4+CD8-, CD4-CD8+, or CD4+CD8+ phenotype and express alpha beta or gamma delta TCR. By Northern blot analysis and amplification by the polymerase chain reaction, IL-2 mRNA could be detected in all T. parva-infected cell lines tested. IL-2 mRNA expression was also shown to be dependent on the continuous presence of the parasite in the host cell cytoplasm, because elimination of the parasite by treatment of T. parva-infected cell cultures with the theilericidal drug BW720c resulted in the disappearance of detectable IL-2 mRNA. The effect of anti-IL-2 antibodies on the proliferation of T. parva-infected cells was also tested. Inhibition experiments suggest that although IL-2 mRNA can be detected in all cell lines tested, not all T. parva-infected cell lines are dependent on IL-2 for their proliferation. Our data provide the first example for the constitutive expression of IL-2 mRNA in T and B cells caused by infection with an intracellular parasite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between pesticides and parasites are believed to be responsible for increased mortality of honey bee (Apis mellifera) colonies in the northern hemisphere. Previous efforts have employed experimental approaches using small groups under laboratory conditions to investigate influence of these stressors on honey bee physiology and behaviour, although both the colony level and field conditions play a key role for eusocial honey bees. Here, we challenged honey bee workers under in vivo colony conditions with sublethal doses of the neonicotinoid thiacloprid, the miticide tau-fluvalinate and the endoparasite Nosema ceranae, to investigate potential effects on longevity and behaviour using observation hives. In contrast to previous laboratory studies, our results do not suggest interactions among stressors, but rather lone effects of pesticides and the parasite on mortality and behaviour, respectively. These effects appear to be weak due to different outcomes at the two study sites, thereby suggesting that the role of thiacloprid, tau-fluvalinate and N. ceranae and interactions among them may have been overemphasized. In the future, investigations into the effects of honey bee stressors should prioritize the use of colonies maintained under a variety of environmental conditions in order to obtain more biologically relevant data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequestration of red blood cells infected with the human malaria parasite Plasmodium falciparum in organs such as the brain is considered important for pathogenicity. A similar phenomenon has been observed in mouse models of malaria, using the rodent parasite Plasmodium berghei, but it is unclear whether the P. falciparum proteins known to be involved in this process are conserved in the rodent parasite. Here we identify the P. berghei orthologues of two such key factors of P. falciparum, SBP1 and MAHRP1. Red blood cells infected with P. berghei parasites lacking SBP1 or MAHRP1a fail to bind the endothelial receptor CD36 and show reduced sequestration and virulence in mice. Complementation of the mutant P. berghei parasites with the respective P. falciparum SBP1 and MAHRP1 orthologues restores sequestration and virulence. These findings reveal evolutionary conservation of the machinery underlying sequestration of divergent malaria parasites and support the notion that the P. berghei rodent model is an adequate tool for research on malaria virulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection of cattle with the protozoan Theileria parva results in uncontrolled T lymphocyte proliferation resulting in lesions resembling multicentric lymphoma. Parasitized cells exhibit autocrine growth characterized by persistent translocation of the transcriptional regulatory factor nuclear factor kappaB (NFkappaB) to the nucleus and consequent enhanced expression of interleukin 2 and the interleukin 2 receptor. How T. parva induces persistent NFkappaB activation, required for T cell activation and proliferation, is unknown. We hypothesized that the parasite induces degradation of the IkappaB molecules which normally sequester NFkappaB in the cytoplasm and that continuous degradation requires viable parasites. Using T. parva-infected T cells, we showed that the parasite mediates continuous phosphorylation and proteolysis of IkappaBalpha. However, IkappaBalpha reaccumulated to high levels in parasitized cells, which indicated that T. parva did not alter the normal NFkappaB-mediated positive feedback loop which restores cytoplasmic IkappaBalpha. In contrast, T. parva mediated continuous degradation of IkappaBbeta resulting in persistently low cytoplasmic IkappaBbeta levels. Normal IkappaBbeta levels were only restored following T. parva killing, indicating that viable parasites are required for IkappaBbeta degradation. Treatment of T. parva-infected cells with pyrrolidine dithiocarbamate, a metal chelator, blocked both IkappaB degradation and consequent enhanced expression of NFkappaB dependent genes. However treatment using the antioxidant N-acetylcysteine had no effect on either IkappaB levels or NFkappaB activation, indicating that the parasite subverts the normal IkappaB regulatory pathway downstream of the requirement for reactive oxygen intermediates. Identification of the critical points regulated by T. parva may provide new approaches for disease control as well as increase our understanding of normal T cell function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intracellular parasite Theileria parva transforms bovine T-lymphocytes, inducing uncontrolled proliferation. Upon infection, cells cease to require antigenic stimulation and exogenous growth factors to proliferate. Earlier studies have shown that pathways triggered via stimulation of the T-cell receptor are silent in transformed cells. This is reflected by a lack of phosphorylation of key signalling molecules and the fact that proliferation is not inhibited by immunosuppressants such as cyclosporin and ascomycin that target calcineurin. This suggests that the parasite bypasses the normal T-cells activation pathways to induce proliferation. Among the MAP-kinase pathways, ERK and p38 are silent, and only Jun N-terminal kinase is activated. This appears to suffice to induce constitutive activation of the transcription factor AP-1. More recently, it could be shown that the presence of the parasite in the host cell cytoplasm also induces constitutive activation of NF-kappaB, a transcription factor involved in proliferation and protection against apoptosis. Activation is effectuated by parasite-induced degradation of IkappaBs, the cytoplasmic inhibitors which sequester NF-kappaB in the cytoplasm. NF-kappaB activation is resistant to the antioxidant N-acetyl cysteine and a range of other reagents, suggesting that activation might occur in an unorthodox manner. Studies using inhibitors and dominant negative mutants demonstrate that the parasite activates a NF-kappaB-dependent anti-apoptotic mechanism that protects the transformed cell form spontaneous apoptosis and is essential for maintaining the transformed state of the parasitised cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmission of the protozoan parasite Giardia lamblia from one to another host individuum occurs through peroral ingestion of cysts which, following excystation in the small intestine, release two trophozoites each. Many studies have focused on the major surface antigen, VSP (for variant surface protein), which is responsible for the antigenic variability of the parasite. By using trophozoites of G. lamblia clone GS/M-83-H7 (expressing VSP H7) and the neonatal mouse model for experimental infections, we quantitatively assessed the process of antigenic variation of the parasite on the transcriptional level. In the present study, variant-specific regions identified on different GS/M-83-H7 vsp sequences served as targets for quantitative reverse transcription-PCR to monitor alterations in vsp mRNA levels during infection. Respective results demonstrated that antigenic switching of both the duodenal trophozoite and the cecal cyst populations was associated with a massive reduction in vsp H7 mRNA levels but not with a simultaneous increase in transcripts of any of the subvariant vsp genes analyzed. Most importantly, we also explored giardial variant-type formation and vsp mRNA levels after infection of mice with cysts. This infection mode led to an antigenic reset of the parasite in that a VSP H7-negative inoculum "converted" into a population of intestinal trophozoites that essentially consisted of the original VSP H7 type. This antigenic reset appears to be associated with excystation rather than with a selective process which favors expansion of a residual population of VSP H7 types within the antigenically diversified cyst inoculum. Based on these findings, the VSP H7 type has to be regarded as a predominant variant of G. lamblia clone GS/M-83-H7 which (re-)emerges during early-stage infection and may contribute to an optimal establishment of the parasite within the intestine of the experimental murine host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, interleukin-6 (IL-6)-deficient mice were infected with Giardia lamblia clone GS/M-83-H7. Murine IL-6 deficiency did not affect the synthesis of parasite-specific intestinal immunoglobulin A. However, in contrast to wild-type mice, IL-6-deficient animals were not able to control the acute phase of parasite infection. Reverse transcription-PCR-based quantitation of cytokine mRNA levels in peripheral lymph node cells exhibited a short-term up-regulation of IL-4 expression in IL-6-deficient mice that seemed to be associated with failure in controlling the parasite population. This observation suggests a further elucidation of IL-4-dependent, Th2-type regulatory processes regarding their potential to influence the course of G. lamblia infection in the experimental murine host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The merozoite stage of the malaria parasite that infects erythrocytes and causes the symptoms of the disease is initially formed inside host hepatocytes. However, the mechanism by which hepatic merozoites reach blood vessels (sinusoids) in the liver and escape the host immune system before invading erythrocytes remains unknown. Here, we show that parasites induce the death and the detachment of their host hepatocytes, followed by the budding of parasite-filled vesicles (merosomes) into the sinusoid lumen. Parasites simultaneously inhibit the exposure of phosphatidylserine on the outer leaflet of host plasma membranes, which act as "eat me" signals to phagocytes. Thus, the hepatocyte-derived merosomes appear to ensure both the migration of parasites into the bloodstream and their protection from host immunity.