64 resultados para Nonsteroidal anti-inflammatory drugs
Resumo:
OBJECTIVES: Although regular physical exercise clearly reduces cardiovascular morbidity risk, long-term endurance sports practice has been recognized as a risk factor for atrial fibrillation (AF). However, the mechanisms how endurance sports can lead to AF are not yet clear. The aim of our present study was to investigate the influence of long-term endurance training on vagal tone, atrial size, and inflammatory profile in professional elite soccer players. METHODS: A total of 25 professional major league soccer players (mean age 24+/-4 years) and 20 sedentary controls (mean age 26+/-3 years) were included in the study and consecutively examined. All subjects underwent a sports cardiology check-up with physical examination, electrocardiography, echocardiography, exercise testing on a bicycle ergometer, and laboratory analysis [standard laboratory and cytokine profile: interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, IL-8, IL-10]. RESULTS: Athletes were divided into two groups according to presence or absence of an early repolarization (ER) pattern, defined as a ST-segment elevation at the J-point (STE) >/=0.1mm in 2 leads. Athletes with an ER pattern showed significantly lower heart rate and an increased E/e' ratio compared to athletes without an ER pattern. STE significantly correlated with E/e' ratio as well as with left atrial (LA) volume. The pro-inflammatory cytokines IL-6, IL-8, TNF-alpha as well as the anti-inflammatory cytokine IL-10 were significantly elevated in all soccer players. However, athletes with an ER pattern had significantly higher IL-6 plasma levels than athletes without ER pattern. Furthermore, athletes with "high" level IL-6 had significantly larger LA volumes than players with "low" level IL-6. CONCLUSIONS: Athletes with an ER pattern had significantly higher E/e' ratios, reflecting higher atrial filling pressures, higher LA volume, and higher IL-6 plasma levels. All these factors may contribute to atrial remodeling over time and thus increase the risk of AF in long-term endurance sports.
Resumo:
OBJECTIVE AND DESIGN A systematic review of all literature was done to assess the ability of the progestin dienogest (DNG) to influence the inflammatory response of endometriotic cells. MAIN OUTCOME MEASURES In vitro and in vivo studies report an influence of DNG on the inflammatory response in eutopic or ectopic endometrial tissue (animal or human). RESULTS After strict inclusion criteria were satisfied, 15 studies were identified that reported a DNG influence on the inflammatory response in endometrial tissue. These studies identified a modulation of prostaglandin (PG) production and metabolism (PGE2, PGE2 synthase, cyclo-oxygenase-2 and microsomal PGE synthase-1), pro-inflammatory cytokine and chemokine production [interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, monocyte chemoattractant protein-1 and stromal cell-derived factor-1], growth factor biosynthesis (vascular endothelial growth factor and nerve growth factor) and signaling kinases, responsible for the control of inflammation. Evidence supports a progesterone receptor-mediated inhibition of the inflammatory response in PR-expressing epithelial cells. It also indicated that DNG inhibited the inflammatory response in stromal cells, however, whether this was via a PR-mediated mechanism is not clear. CONCLUSIONS DNG has a significant effect on the inflammatory microenvironment of endometriotic lesions that may contribute to its clinical efficacy. A better understanding of the specific anti-inflammatory activity of DNG and whether this contributes to its clinical efficacy can help develop treatments that focus on the inhibition of inflammation while minimizing hormonal modulation.
Resumo:
The phosphoinositide 3-kinase (PI3K) family of signalling enzymes play a key role in the transduction of signals from activated cell surface receptors controlling cell growth and proliferation, survival, metabolism, and migration. The intracellular signalling pathway from activated receptors to PI3K and its downstream targets v-akt murine thymoma viral oncogene homolog (Akt) and mechanistic target of rapamycin (mTOR) is very frequently deregulated by genetic and epigenetic mechanisms in human cancer, including leukaemia and lymphoma. In the past decade, an arsenal of small molecule inhibitors of key enzymes in this pathway has been developed and evaluated in pre-clinical studies and clinical trials in cancer patients. These include pharmacological inhibitors of Akt, mTOR, and PI3K, some of which are approved for the treatment of leukaemia and lymphoma. The PI3K family comprises eight different catalytic isoforms in humans, which have been subdivided into three classes. Class I PI3K isoforms have been extensively studied in the context of human cancer, and the isoforms p110α and p110δ are validated drug targets. The recent approval of a p110δ-specific PI3K inhibitor (idelalisib/Zydelig®) for the treatment of selected B cell malignancies represents the first success in developing these molecules into anti-cancer drugs. In addition to PI3K inhibitors, mTOR inhibitors are intensively studied in leukaemia and lymphoma, and temsirolimus (Torisel®) is approved for the treatment of a type of lymphoma. Based on these promising results it is hoped that additional novel PI3K pathway inhibitors will in the near future be further developed into new drugs for leukaemia and lymphoma.
Resumo:
The three anti-malarial drugs artemiside, artemisone, and mefloquine, and the naphthoquinone buparvaquone known to be active against theileriosis in cattle and Leishmania infections in rodents, were assessed for activity against Neospora caninum infection. All four compounds inhibited the proliferation of N. caninum tachyzoites in vitro with IC50 in the sub-micromolar range, but artemisone and buparvaquone were most effective (IC50 = 3 and 4.9 nM, respectively). However, in a neosporosis mouse model for cerebral infection comprising Balb/c mice experimentally infected with the virulent isolate Nc-Spain7, the three anti-malarial compounds failed to exhibit any activity, since treatment did not reduce the parasite burden in brains and lungs compared to untreated controls. Thus, these compounds were not further evaluated in pregnant mice. On the other hand, buparvaquone, shown earlier to be effective in reducing the parasite load in the lungs in an acute neosporosis disease model, was further assessed in the pregnant mouse model. Buparvaquone efficiently inhibited vertical transmission in Balb/c mice experimentally infected at day 7 of pregnancy, reduced clinical signs in the pups, but had no effect on cerebral infection in the dams. This demonstrates proof-of-concept that drug repurposing may lead to the discovery of an effective compound against neosporosis that can protect offspring from vertical transmission and disease.