145 resultados para Neuropsychology, Mild traumatic brain injury, DASS, Psychopathology, Assessment, Diagnosis
Resumo:
PURPOSE In traumatic brain injury, diffusion-weighted and diffusion tensor imaging of the brain are essential techniques for determining the pathology sustained and the outcome. Postmortem cross-sectional imaging is an established adjunct to forensic autopsy in death investigation. The purpose of this prospective study was to evaluate postmortem diffusion tensor imaging in forensics for its feasibility, influencing factors and correlation to the cause of death compared with autopsy. METHODS Postmortem computed tomography, magnetic resonance imaging, and diffusion tensor imaging with fiber tracking were performed in 10 deceased subjects. The Likert scale grading of colored fractional anisotropy maps was correlated to the body temperature and intracranial pathology to assess the diagnostic feasibility of postmortem diffusion tensor imaging and fiber tracking. RESULTS Optimal fiber tracking (>15,000 fiber tracts) was achieved with a body temperature at 10°C. Likert scale grading showed no linear correlation (P > 0.7) to fiber tract counts. No statistically significant correlation between total fiber count and postmortem interval could be observed (P = 0.122). Postmortem diffusion tensor imaging and fiber tracking allowed for radiological diagnosis in cases with shearing injuries but was impaired in cases with pneumencephalon and intracerebral mass hemorrhage. CONCLUSIONS Postmortem diffusion tensor imaging with fiber tracking provides an exceptional in situ insight "deep into the fibers" of the brain with diagnostic benefit in traumatic brain injury and axonal injuries in the assessment of the underlying cause of death, considering influencing factors for optimal imaging technique.
Resumo:
BACKGROUND It is unclear how complex pathophysiological mechanisms that result in early brain injury (EBI) after subarachnoid hemorrhage (SAH) are triggered. We investigate how peak intracranial pressure (ICP), amount of subarachnoid blood, and hyperacute depletion of cerebral perfusion pressure (CPP) correlate to the onset of EBI following experimental SAH. METHODS An entire spectrum of various degrees of SAH severities measured as peak ICP was generated and controlled using the blood shunt SAH model in rabbits. Standard cardiovascular monitoring, ICP, CPP, and bilateral regional cerebral blood flow (rCBF) were continuously measured. Cells with DNA damage and neurodegeneration were detected using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Fluoro-jade B (FJB). RESULTS rCBF was significantly correlated to reduction in CPP during the initial 15 min after SAH in a linear regression pattern (r (2) = 0.68, p < 0.001). FJB- and TUNEL-labeled cells were linearly correlated to reduction in CPP during the first 3 min of hemorrhage in the hippocampal regions (FJB: r (2) = 0.50, p < 0.01; TUNEL: r (2) = 0.35, p < 0.05), as well as in the basal cortex (TUNEL: r (2) = 0.58, p < 0.01). EBI occurred in animals with severe (relative CPP depletion >0.4) and moderate (relative CPP depletion >0.25 but <0.4) SAH. Neuronal cell death was equally detected in vulnerable and more resistant brain regions. CONCLUSIONS The degree of EBI in terms of neuronal cell degeneration in both the hippocampal regions and the basal cortex linearly correlates with reduced CPP during hyperacute SAH. Temporary CPP reduction, however, is not solely responsible for EBI but potentially triggers processes that eventually result in early brain damage.
Resumo:
OBJECTIVE: New routes for cell transplantation into the brain need to be explored as intracerebral or intrathecal applications have a high risk to cause damage to the central nervous system. It has been hypothesized that transnasally administrated cells bypass the blood-brain barrier and migrate along the olfactory neural route into the brain and cerebrospinal fluid. Our goal is to confirm this hypothesis by transnasally administrating Wharton’s Jelly mesenchymal stem cells (WJ-MSC) and neural progenitor cells (NPC) to perinatal rats in a model of hypoxic-ischemic brain injury. STUDY DESIGN: Four-day-old Wistar rat pups, previously brain-damaged by combined hypoxic-ischemic and inflammatory insult, either received WJ-MSC or green fluorescent protein-expressing NPC: The heads of the rat pups were immobilized and 3 ml drops containing the cells (50’000 cells/ml) were placed on one nostril allowing it to be snorted. This procedure was repeated twice, alternating right to left nostril with an interval of one minute between administrations. The rat pups received a total of 600’000 cells. Animals were sacrificed 24h, 48h or 7 days after the application of the cells. Fixed brains were collected, embedded in paraffin and sectioned. RESULTS: Transplanted cells were found in the layers of the olfactory bulb (OB), the cerebral cortex, thalamus and the hippocampus. The amount of cells was highest in the OB. Animals treated with transnasally delivered stem cells showed significantly decreased gliosis compared to untreated animals. CONCLUSION: Our data show that transnasal delivery of WJ-MSC and NPC to the newborn brain after perinatal brain damage is successful. The cells not only migrate the brain, but also decrease scar formation and improve neurogenesis. Therefore, the non-invasive intranasal delivery of stem cells to the brain may be the preferred method for stem cell treatment of perinatal brain damage and should be preferred in future clinical trials.
Resumo:
BACKGROUND There has been little research on bathroom accidents. It is unknown whether the shower or bathtub are connected with special dangers in different age groups or whether there are specific risk factors for adverse outcomes. METHODS This cross-sectional analysis included all direct admissions to the Emergency Department at the Inselspital Bern, Switzerland from 1 January 2000 to 28 February 2014 after accidents associated with the bathtub or shower. Time, age, location, mechanism and diagnosis were assessed and special risk factors were examined. Patient groups with and without intracranial bleeding were compared with the Mann-Whitney U test.The association of risk factors with intracranial bleeding was investigated using univariate analysis with Fisher's exact test or logistic regression. The effects of different variables on cerebral bleeding were analysed by multivariate logistic regression. RESULTS Two hundred and eighty (280) patients with accidents associated with the bathtub or shower were included in our study. Two hundred and thirty-five (235) patients suffered direct trauma by hitting an object (83.9%) and traumatic brain injury (TBI) was detected in 28 patients (10%). Eight (8) of the 27 patients with mild traumatic brain injuries (GCS 13-15), (29.6%) exhibited intracranial haemorrhage. All patients with intracranial haemorrhage were older than 48 years and needed in-hospital treatment. Patients with intracranial haemorrhage were significantly older and had higher haemoglobin levels than the control group with TBI but without intracranial bleeding (p<0.05 for both).In univariate analysis, we found that intracranial haemorrhage in patients with TBI was associated with direct trauma in general and with age (both p<0.05), but not with the mechanism of the fall, its location (shower or bathtub) or the gender of the patient. Multivariate logistic regression analysis identified only age as a risk factor for cerebral bleeding (p<0.05; OR 1.09 (CI 1.01;1.171)). CONCLUSION In patients with ED admissions associated with the bathtub or shower direct trauma and age are risk factors for intracranial haemorrhage. Additional effort in prevention should be considered, especially in the elderly.
Management of Patients Presenting with Acute Subdural Hematoma due to Ruptured Intracranial Aneurysm
Resumo:
Acute subdural hematoma is a rare presentation of ruptured aneurysms. The rarity of the disease makes it difficult to establish reliable clinical guidelines. Many patients present comatose and differential diagnosis is complicated due to aneurysm rupture results in or mimics traumatic brain injury. Fast decision-making is required to treat this life-threatening condition. Determining initial diagnostic studies, as well as making treatment decisions, can be complicated by rapid deterioration of the patient, and the mixture of symptoms due to the subarachnoid hemorrhage or mass effect of the hematoma. This paper reviews initial clinical and radiological findings, diagnostic approaches, treatment modalities, and outcome of patients presenting with aneurysmal subarachnoid hemorrhage complicated by acute subdural hematoma. Clinical strategies used by several authors over the past 20 years are discussed and summarized in a proposed treatment flowchart.
Resumo:
OBJECTIVE: Failure of energy metabolism after traumatic brain injury may be a major factor limiting outcome. Although glucose is the primary metabolic substrate in the healthy brain, the well documented surge in tissue lactate after traumatic brain injury suggests that lactate may provide an energy need that cannot be met by glucose. We hypothesized, therefore, that administration of lactate or the combination of lactate and supraphysiological oxygen may improve mitochondrial oxidative respiration in the brain after rat fluid percussion injury. We measured oxygen consumption (VO2) to determine what effects glucose, lactate, oxygen, and the combination of lactate and oxygen have on mitochondrial respiration in both injured and uninjured rat brain tissue. METHODS: Anesthetized Sprague-Dawley rats were intubated and ventilated with either 0.21 or 1.0 fraction of inspired oxygen (FIO2). Brain tissue from acute sham animals was subjected in vitro to 1.1 mM, 12 mM and 100 mM concentrations of glucose and L-lactate. In another group, injury (fluid percussion injury of 2.5 +/- 0.02 atmospheres) was induced over the left hemisphere. The VO2 of mug amounts of brain tissues were measured in a microrespirometry system (Cartesian diver). RESULTS: The VO2 was found to be independent of glucose concentrations, but dose-dependent for lactate. Moreover, the lactate dependent VO2s were all significantly higher than those generated by glucose. Injured rats on FIO2 0.21 had brain tissue VO2 rates that were significantly lower than those of shams or preinjury levels. In injured rats treated with FIO2 1.0, the reduction in VO2 levels was prevented. Injured rats that received an intravenous infusion of 100 mM lactate had VO2 rates that were significantly higher than those obtained with FIO2 1.0. Combined treatment further boosted the lactate generated VO2 rates by approximately 15%. CONCLUSION: Glucose sustains mitochondrial respiration at a low level "fixed" rate because, despite increasing its concentration nearly 100-fold, it cannot up-regulate VO2 after fluid percussion injury. Lactate produces a dose-dependent VO2 response, possibly enabling mitochondria to meet the increased energy needs of the injured brain.
Resumo:
ABSTRACT: BACKGROUND: Serum protein S-100B determinations have been widely proposed in the past as markers of traumatic brain injury and used as a predictor of injury severity and outcome. The purpose of this prospective observational case series was therefore to determine S-100B serum levels in patients with isolated injuries to the back. METHODS: Between 1 February and 1 May 2008, serum samples for S-100B analysis were obtained within 1 hour of injury from 285 trauma patients. All patients with a head injury, polytrauma, and intoxicated patients were excluded to select isolated injuries to the spine. 19 patients with isolated injury of the back were included. Serum samples for S-100B analysis and CT spine were obtained within 1 hours of injury. RESULTS: CT scans showed vertebral fractures in 12 of the 19 patients (63%). All patients with fractures had elevated S-100B levels. Amongst the remaining 7 patients without a fracture, only one patient with a severe spinal contusion had an S-100B concentration above the reference limit. The mean S-100B value of the group with fractures was more than 4 times higher than in the group without fractures (0.385 vs 0.087 mug/L, p = 0.0097). CONCLUSION: Our data, although limited due to a very small sample size, suggest that S-100B serum levels might be useful for the diagnosis of acute vertebral body and spinal cord injury with a high negative predictive power. According to the literature, the highest levels of serum S-100B are found when large bones are fractured. If a large prospective study confirms our findings, determining the S-100B level may contribute to more selective use of CT and MRI in spinal trauma.
Resumo:
BACKGROUND: Severe brain trauma leads to an activation of the immune system. To this date, neither the exact perturbation of the specific immune reaction induced by the traumatic brain injury (TBI), nor the interactions leading to the infiltration of peripheral immune cells into the brain are fully understood. PATIENTS AND METHODS: Serum was collected from 17 patients with TBI and a long bone fracture, 24 patients with an isolated long bone fracture and from healthy individuals. The effect of the serum on normal human monocytes and T-lymphocytes was tested in vitro by assessing proliferation and expression of surface markers, chemokine receptors and cytokines. RESULTS: Serum collected from patients with a TBI and a long bone fracture increased the expression of the chemokine receptor CCR4 in monocytes when compared to patients with an isolated long bone fracture. Extending this comparison to T-lymphocytes, the serum from TBI patients induced lower proliferation rates and decreased expression of the pro-inflammatory cytokine TNF-alpha, while simultaneously increasing the secretion of immune-modulatory cytokines (IL-4, IL-10 and TGF-beta) (p<0.05). CONCLUSION: Patients with a TBI release currently unknown soluble factors into the circulating blood that up regulate expression of chemokine receptor CCR4 in peripheral blood monocytes whilst concurrently inducing expression of immunosuppressive cytokines by activated T-lymphocytes.
Resumo:
BACKGROUND: Recent literature demonstrates hyperglycemia to be common in patients with trauma and associated with poor outcome in patients with traumatic brain injury and critically ill patients. The goal of this study was to analyze the impact of admission blood glucose on the outcome of surviving patients with multiple injuries. METHODS: Patients' charts (age >16) admitted to the emergency room of the University Hospital of Berne, Switzerland, between January 1, 2002, and December 31, 2004, with an Injury Severity Score >or=17 and more than one severely injured organ system were reviewed retrospectively. Outcome measurements included morbidity, intensive care unit, and hospital length of stay. RESULTS: The inclusion criteria were met by 555 patients, of which 108 (19.5%) patients died. After multiple regression analysis, admission blood glucose proved to be an independent predictor of posttraumatic morbidity (p < 0.0001), intensive care unit, and hospital length of stay (p < 0.0001), despite intensified insulin therapy on the intensive care unit. CONCLUSIONS: In this population of patients with multiple injuries, hyperglycemia on admission was strongly associated with increased morbidity, especially infections, prolonged intensive care unit, and hospital length of stay independent of injury severity, gender, age, and various biochemical parameters.
Resumo:
Objective: Several biomarker have shown associations with severity, vasospasm, ischemic events or outcome in aneurysmal subarachnoid hemorrhage. Yet no biomarker is used in daily clinical routine. Previously encephalin peptides were described as new biomarkers in ischemic stroke and traumatic brain injury. We sought to evaluate the usefulness of Proenkephalin A, a precursor protein of encephalin peptides, as biomarker in aneurysmal subarachnoid hemorrhage. Method: Eighteen consecutive patients with aSAH had plasma PENK A levels measured with a validated chemiluminescence sandwich immunoassay. The association of PENK A levels at admission with severity of SAH according to the World Federation of Neurological Surgeons (WFNS) grade after resuscitation was the primary endpoint. Levels of PENK A are analyzed with respect to different clinical and radiological scores as well as between patients with ICH, intraventricular hemorrhage, hydrocephalus, brain edema, vasospasm and ischemia. Results: Good grade patients showed median PENK A levels of 73.9pmol/l (IQR 69-80.4) and poor grade patients 117pmol/l (IQR 86-149). PENK A levels are significantly associated with severity of SAH as graded on the WFNS scale (p=0.03). No other parameter had a significant association. Conclusions: PENK A might be a useful serum marker in aSAH. Yet, larger trials also with serial PENK A assessments are needed.
Resumo:
Embryonic-maternal interaction from the earliest stages of gestation has a key, sustained role in neurologic development, persisting into adulthood. Early adverse events may be detrimental in adulthood. Protective factors present during gestation could significantly impact post-natal therapy. The role of PreImplantation Factor (PIF) within this context is herein examined. Secreted by viable early embryos, PIF establishes effective embryonic-maternal communication and exerts essential trophic and protective roles by reducing oxidative stress and protein misfolding and by blunting the nocive let-7 microRNA related pathway. PIF's effects on systemic immunity lead to comprehensive immune modulation, not immune suppression. We examine PIF's role in protecting embryos from adverse maternal environment, which can lead to neurological disorders that may only manifest post-nataly: Synthetic PIF successfully translates endogenous PIF features in both pregnant and non-pregnant clinically relevant models. Specifically PIF has neuroprotective effects in neonatal prematurity. In adult relapsing-remitting neuroinflammation, PIF reverses advanced paralysis while promoting neurogenesis. PIF reversed Mycobacterium smegmatis induced brain infection. In graft-vs.-host disease, PIF reduced skin ulceration, liver inflammation and colon ulceration while maintaining beneficial anti-cancer, graft-vs.-leukemia effect. Clinical-grade PIF has high-safety profile even at supraphysiological doses. The FDA awarded Fast-Track designation, and university-sponsored clinical trials for autoimmune disorder are ongoing. Altogether, PIF properties point to its determining regulatory role in immunity, inflammation and transplant acceptance. Specific plans for using PIF for the treatment of complex neurological disorders (ie. traumatic brain injury, progressive paralysis), including neuroprotection from newborn to adult, are presented.
Resumo:
Pneumococcal meningitis (PM) is characterized by an intense inflammatory host reaction that contributes to the development of cortical necrosis and hippocampal apoptosis. Inflammatory conditions in the brain are known to induce tryptophan degradation along the kynurenine pathway, resulting in accumulation of neurotoxic metabolites. In the present study, we investigated the contribution of the kynurenine pathway to brain injury in experimental PM by measuring the concentration of its metabolites and the enzymatic activities and mRNA levels of its major enzymes in the vulnerable brain regions. In the late phase of acute PM, we found a significant transcriptional upregulation of kynurenine-3-hydroxylase and an accumulation of the neurotoxic metabolites 3-hydroxykynurenine (3-HKYN) and 3-hydroxyanthranilic acid in cortex and hippocampus. The positive correlation between the concentration of 3-HKYN and the extent of hippocampal apoptosis adds support to the concept that 3-HKYN contributes to brain injury in PM.
Resumo:
Bacterial meningitis is characterized by an inflammatory reaction to the invading pathogens that can ultimately lead to sensorineural hearing loss, permanent brain injury, or death. The matrix metalloproteinases (MMPs) and tumor necrosis factor alpha-converting enzyme (TACE) are key mediators that promote inflammation, blood-brain barrier disruption, and brain injury in bacterial meningitis. Doxycycline is a clinically used antibiotic with anti-inflammatory effects that lead to reduced cytokine release and the inhibition of MMPs. Here, doxycycline inhibited TACE with a 50% inhibitory dose of 74 microM in vitro and reduced the amount of tumor necrosis factor alpha released into the cerebrospinal fluid by 90% in vivo. In an infant rat model of pneumococcal meningitis, a single dose of doxycycline (30 mg/kg) given as adjuvant therapy in addition to ceftriaxone 18 h after infection significantly reduced the mortality, the blood-brain barrier disruption, and the extent of cortical brain injury. Adjuvant doxycycline (30 mg/kg given subcutaneously once daily for 4 days) also attenuated hearing loss, as assessed by auditory brainstem response audiometry, and neuronal death in the cochlear spiral ganglion at 3 weeks after infection. Thus, doxycycline, probably as a result of its anti-inflammatory properties, had broad beneficial effects in the brain and the cochlea and improved survival in this model of pneumococcal meningitis in infant rats.