64 resultados para Nerves.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analgesic effects of peripheral nerve blocks can be prolonged with the placement of perineural catheters allowing repeated injections of local anaesthetics in humans. The objectives of this study were to evaluate the clinical suitability of a perineural coiled catheter (PCC) at the sciatic nerve and to evaluate pain during the early post-operative period in dogs after tibial plateau levelling osteotomy. Pre-operatively, a combined block of the sciatic and the femoral nerves was performed under sonographic guidance (ropivacaine 0.5%; 0.3 mL kg−1 per nerve). Thereafter, a PCC was placed near the sciatic nerve. Carprofen (4 mg kg−1 intravenously) was administered at the end of anaesthesia. After surgery, all dogs were randomly assigned to receive four injections of ropivacaine (group R; 0.25%, 0.3 mL kg−1) or NaCl 0.9% (group C; 0.3 mL kg−1) every 6 h through the PCC. Pain was assessed by use of a visual analogue scale (VAS) and a multi-dimensional pain score (4Avet) before surgery (T-1), for 390 min (T0, T30, T60, T120, T180, T240, T300, T360 and T390) as well as 1 day after surgery (Day 1). Methadone (0.1 mg kg−1) was administered each time the VAS was ≥40 mm or the 4Avet was ≥5. At T390 dogs received buprenorphine (0.02 mg kg−1). Data were compared using Mann–Whitney rank sum tests and repeated measures analysis of variance. Regardless of group allocation, 55% of dogs required methadone. VAS was significantly lower at T390 (P = 0.003), and at Day 1 (P = 0.002) and so was 4Avet at Day 1 (P = 0.012) in group R than in group C. Bleeding occurred in one dog at PCC placement and PCC dislodged six times of 47 PCCs placed. Minor complications occurred with PCC but allowed four repeated administrations of ropivacaine or saline over 24 h in 91.5% of the cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. MATERIALS AND METHODS After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm(2); 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test. RESULTS Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm(2)/s; twofold acceleration: 1.016 ± 0.123 mm(2)/s; threefold acceleration: 0.979 ± 0.153 mm(2)/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004-0.021). CONCLUSION Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI. KEY POINTS • Standard DTI of the median nerve is limited by its long acquisition time. • Simultaneous multi-slice acquisition is a new technique for accelerated DTI. • Accelerated DTI of the median nerve yields similar results to standard DTI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuroinflammation has long been studied for its connection to the development and progression of Multiple Sclerosis. In recent years, the field has expanded to look at the role of inflammatory processes in a wide range of neurological conditions and cognitive disorders including stroke, amyotrophic lateral sclerosis, and autism. Researchers have also started to note the beneficial impacts of neuroinflammation in certain diseases. Neuroinflammation: New Insights into Beneficial and Detrimental Functions provides a comprehensive view of both the detriments and benefits of neuroinflammation in human health. Neuroinflammation: New Insights into Beneficial and Detrimental Functions opens with two chapters that look at some fundamental aspects of neuroinflammation in humans and rodents. The remainder of the book is divided into two sections which examine both the detrimental and beneficial aspects of inflammation on the brain, spinal cord and peripheral nerves, on various disease states, and in normal aging. These sections provide a broad picture of the role neuroinflammation plays in the physiology and pathology of various neurological disorders. Providing cross-disciplinary coverage, Neuroinflammation: New Insights into Beneficial and Detrimental Functions will be an essential volume for neuroimmunologists, neurobiologists, neurologists, and others interested in the field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distinct glial cell types of the vertebrate peripheral nervous system (PNS) are derived from the neural crest. Here we show that the expression of the Ets domain transcription factor Erm distinguishes satellite glia from Schwann cells beginning early in rat PNS development. In developing dorsal root ganglia (DRG), Erm is present both in presumptive satellite glia and in neurons. In contrast, Erm is not detectable at any developmental stage in Schwann cells in peripheral nerves. In addition, Erm is downregulated in DRG-derived glia adopting Schwann cell traits in culture. Thus, Erm is the first described transcription factor expressed in satellite glia but not in Schwann cells. In culture, the Neuregulin1 (NRG1) isoform GGF2 maintains Erm expression in presumptive satellite cells and reinduces Erm expression in DRG-derived glia but not in Schwann cells from sciatic nerve. These data demonstrate that there are intrinsic differences between these glial subtypes in their response to NRG1 signaling. In neural crest cultures, Erm-positive progenitor cells give rise to two distinct glial subtypes: Erm-positive, Oct-6-negative satellite glia in response to GGF2, and Erm-negative, Oct-6-positive Schwann cells in the presence of serum and the adenylate cyclase activator forskolin. Thus, Erm-positive neural crest-derived progenitor cells and presumptive satellite glia are able to acquire Schwann cell features. Given the in vivo expression of Erm in peripheral ganglia, we suggest that ganglionic Erm-positive cells may be precursors of Schwann cells.