76 resultados para NOBLE
Resumo:
We assessed the feasibility and the procedural and long-term safety of intracoronary (i.c) imaging for documentary purposes with optical coherence tomography (OCT) and intravascular ultrasound (IVUS) in patients with acute ST-elevation myocardial infarction (STEMI) undergoing primary PCI in the setting of IBIS-4 study. IBIS4 (NCT00962416) is a prospective cohort study conducted at five European centers including 103 STEMI patients who underwent serial three-vessel coronary imaging during primary PCI and at 13 months. The feasibility parameter was successful imaging, defined as the number of pullbacks suitable for analysis. Safety parameters included the frequency of peri-procedural complications, and major adverse cardiac events (MACE), a composite of cardiac death, myocardial infarction (MI) and any clinically-indicated revascularization at 2 years. Clinical outcomes were compared with the results from a cohort of 485 STEMI patients undergoing primary PCI without additional imaging. Imaging of the infarct-related artery at baseline (and follow-up) was successful in 92.2 % (96.6 %) of patients using OCT and in 93.2 % (95.5 %) using IVUS. Imaging of the non-infarct-related vessels was successful in 88.7 % (95.6 %) using OCT and in 90.5 % (93.3 %) using IVUS. Periprocedural complications occurred <2.0 % of OCT and none during IVUS. There were no differences throughout 2 years between the imaging and control group in terms of MACE (16.7 vs. 13.3 %, adjusted HR1.40, 95 % CI 0.77-2.52, p = 0.27). Multi-modality three-vessel i.c. imaging in STEMI patients undergoing primary PCI is consistent a high degree of success and can be performed safely without impact on cardiovascular events at long-term follow-up.
Resumo:
The RAG’s task is to collect biographical and social data on those Theologians, Jurists, Physicians, and Masters of Arts, who studied at a university between 1250 and 1550. The information is entered into a prosopographic database that will finally cover the entire territory of the Holy Roman Empire. Non-graduated noble visitors of universities are also taken into account. The RAG, which in the end will be a “who is who” of the scholars of the Old Empire, offers divers new and interdisciplinary perspectives due to its vast collection of data. Qualitative and quantitative statements on the intellectual elite of the Empire, their European networks, as well as institutional and territorial comparisons will be possible. Thus the scholars' role in pre-modern society can be described on a firm empirical basis and explained within the framework of modern educational research, with special reference to social, cultural, and scientific history. Up to 50,000 scholars are to be expected.
Resumo:
Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases׳ abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn׳s atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn׳s bulk elemental and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn׳s upper troposphere may help constraining its bulk O/H ratio. We compare predictions of Jupiter and Saturn׳s bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to most extrasolar systems. In situ measurements of Saturn׳s stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Different mission architectures are envisaged, which would benefit from strong international collaborations, all based on an entry probe that would descend through Saturn׳s stratosphere and troposphere under parachute down to a minimum of 10 bar of atmospheric pressure. We finally discuss the science payload required on a Saturn probe to match the measurement requirements.
Resumo:
Dual-phase time projection chambers (TPCs) filled with the liquid noble gas xenon (LXe) are currently the most sensitive detectors searching for interactions of WIMP dark matter in a laboratory-based experiment. This is achieved by combining a large, monolithic dark matter target of a very low background with the capability to localize the interaction vertex in three dimensions, allowing for target fiducialization and multiple-scatter rejection. The background in dual-phase LXe TPCs is further reduced by the simultaneous measurement of the scintillation and ionization signal from a particle interaction, which is used to distinguish signal from background signatures. This article reviews the principle of dual-phase LXe TPCs, and provides an overview about running as well as future experimental efforts.
Resumo:
We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and 7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~2X 10-48 cm2 and WIMP masses around 50 GeV c 2, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ~6 GeV c-2 to cross sections above ~4X10-45cm2. DARWIN could reach a competitive half-life sensitivity of 5.6X1026 y to the neutrinoless double beta decay of 136Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.
Resumo:
Tishomingo is a chemically and structurally unique iron with 32.5 wt.% Ni that contains 20% residual taenite and 80% martensite plates, which formed on cooling to between -75 and -200 °C, probably the lowest temperature recorded by any meteorite. Our studies using transmission (TEM) and scanning electron microscopy (SEM), X-ray microanalysis (AEM) and electron backscatter diffraction (EBSD) show that martensite plates in Tishomingo formed in a single crystal of taenite and decomposed during reheating forming 10-100 nm taenite particles with ∼50 wt.% Ni, kamacite with ∼4 wt.%Ni, along with martensite or taenite with 32 wt.% Ni. EBSD data and experimental constraints show that Tishomingo was reheated to 320-400 °C for about a year transforming some martensite to kamacite and to taenite particles and some martensite directly to taenite without composition change. Fizzy-textured intergrowths of troilite, kamacite with 2.7 wt.% Ni and 2.6 wt.% Co, and taenite with 56 wt.% Ni and 0.15 wt.% Co formed by localized shock melting. A single impact probably melted the sub-mm sulfides, formed stishovite, and reheated and decomposed the martensite plates. Tishomingo and its near-twin Willow Grove, which has 28 wt.% Ni, differ from IAB-related irons like Santa Catharina and San Cristobal that contain 25-36 wt.% Ni, as they are highly depleted in moderately volatile siderophiles and enriched in Ir and other refractory elements. Tishomingo and Willow Grove therefore resemble IVB irons but are chemically distinct. The absence of cloudy taenite in these two irons shows that they cooled through 250 °C abnormally fast at >0.01 °C/yr. Thus this grouplet, like the IVA and IVB irons, suffered an early impact that disrupted their parent body when it was still hot. Our noble gas data show that Tishomingo was excavated from its parent body about 100 to 200 Myr ago and exposed to cosmic rays as a meteoroid with a radius of ∼50-85 cm.
Resumo:
BACKGROUND New generation transcatheter heart valves (THV) may improve clinical outcomes of transcatheter aortic valve implantation. METHODS AND RESULTS In a nationwide, prospective, multicenter cohort study (Swiss Transcatheter Aortic Valve Implantation Registry, NCT01368250), outcomes of consecutive transfemoral transcatheter aortic valve implantation patients treated with the Sapien 3 THV (S3) versus the Sapien XT THV (XT) were investigated. An overall of 153 consecutive S3 patients were compared with 445 consecutive XT patients. Postprocedural mean transprosthetic gradient (6.5±3.0 versus 7.8±6.3 mm Hg, P=0.17) did not differ between S3 and XT patients, respectively. The rate of more than mild paravalvular regurgitation (1.3% versus 5.3%, P=0.04) and of vascular (5.3% versus 16.9%, P<0.01) complications were significantly lower in S3 patients. A higher rate of new permanent pacemaker implantations was observed in patients receiving the S3 valve (17.0% versus 11.0%, P=0.01). There were no significant differences for disabling stroke (S3 1.3% versus XT 3.1%, P=0.29) and all-cause mortality (S3 3.3% versus XT 4.5%, P=0.27). CONCLUSIONS The use of the new generation S3 balloon-expandable THV reduced the risk of more than mild paravalvular regurgitation and vascular complications but was associated with an increased permanent pacemaker rate compared with the XT. Transcatheter aortic valve implantation using the newest generation balloon-expandable THV is associated with a low risk of stroke and favorable clinical outcomes. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01368250.
Resumo:
In the tropics, geochemical records from stalagmites have so far mainly been used to qualitatively reconstruct changes in precipitation, but several new methods to reconstruct past temperatures from stalagmite material have emerged recently: i) liquide vapor homogenization of fluid inclusion water ii) noble gas concentrations in fluid inclusion water, iii) the partitioning of oxygen isotopes between fluid inclusion water and calcite, and iv) the abundance of the 13C18O16O(‘clumped’) isotopologue in calcite. We present, for the first time, a direct comparison of these four paleo-thermometers by applying them to a fossil stalagmite covering nearly two glaciale interglacial cycles (Marine Isotope Stages (MIS) 12 e 9) and to two modern stalagmites, all from northern Borneo. The temperature estimates from the different methods agree in most cases within errors for both the old and recent samples; reconstructed formation temperatures of the recent samples match within 2-sigma errors with measured cave temperatures. However, slight but systematic deviations are observed between noble gas and liquide vapor homogenization temperatures. Whereas the temperature sensitivity of fluid inclusion d18O and clumped isotopes is currently debated, we find that the calibration of Tremaine et al. (2011) for fluid inclusion d18O and a synthetic calcite-based clumped isotope calibration (Ziegler et al., in prep.) yield temperature estimates consistent with the other methods. All methods (with the potential exception of clumped isotopes) show excellent agreement on the amplitude of glaciale interglacial temperature change, indicating temperature shifts of 4-5 C°. This amplitude is similar to the amplitude of Mg/Ca-based regional sea surface temperature records, when correcting for sea level driven changes in cave elevation. Our reconstruction of tropical temperature evolution over the time period from 440 to 320 thousand years ago (ka) adds support to the view that climate sensitivity to varying greenhouse forcing is substantial also in the deep tropics.
Resumo:
Little is known about the noble gas abundances in comets. These highly volatile atoms are possible tracers of the history of cometary matter including the thermal evolution. They can help quantify the contribution of cometary impacts to terrestrial oceans and help elucidate on the formation history of comets and their role in the formation and evolution of planetary atmospheres. This paper focuses on argon and the capabilities to measure this noble gas with in situ mass spectrometry at comet 67P/Churyumov–Gerasimenko, the target of the European Space Agency׳s spacecraft Rosetta. Argon may have been detected by remote sensing in a single Oort cloud comet but to date nothing is known about the isotopic abundances of argon in comets. Furthermore, no detection of argon in a Jupiter-family comet has been reported. Comet 67P/Churyumov–Gerasimenko belongs to the group of Jupiter-family comets and originates most likely in the Kuiper belt. Onboard Rosetta is ROSINA/DFMS (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Double Focusing Mass Spectrometer). DFMS has unprecedented mass resolution and high sensitivity and is designed to measure isotopic ratios including argon (Balsiger et al., 2007). Argon measurements using the DFMS lab model (identical to the flight model) demonstrate this capability. At very least, this mass spectrometer has the resolution and sensitivity to reduce the upper limit on the argon outgassing rate relative to water by more than three orders of magnitude (for 38Ar). Most likely, ROSINA/DFMS will provide the first detection of argon in a Jupiter-family comet together with the first determination of the ³⁶Ar/³⁸Ar ratio at a comet.
Resumo:
Concentrations of atmospheric noble gases (neon, argon, krypton, and xenon) dissolved in groundwaters from northern Oman indicate that the average ground temperature during the Late Pleistocene (15,000 to 24,000 years before present) was 6.5° ± 0.6°C lower than that of today. Stable oxygen and hydrogen isotopic groundwater data show that the origin of atmospheric water vapor changed from a primarily southern, Indian Ocean source during the Late Pleistocene to a dominantly northern, Mediterranean source today. The reduced northern water vapor source is consistent with a drier Last Glacial Maximum through much of northern Africa and Arabia.
Resumo:
The concentrations of the long-lived nuclear reaction products 129I and 36Cl have been measured in samples from the MEGAPIE liquid metal spallation target. Samples from the bulk target material (lead-bismuth eutectic, LBE), from the interface of the metal free surface with the cover gas, from LBE/steel interfaces and from noble metal absorber foils installed in the cover gas system were analysed using Accelerator Mass Spectrometry at the Laboratory of Ion beam Physics at ETH Zürich. The major part of 129I and 36Cl was found accumulated on the interfaces, particularly at the interface of LBE and the steel walls of the target container, while bulk LBE samples contain only a minor fraction of these nuclides. Both nuclides were also detected on the absorber foils to a certain extent (≪ 1% of the total amount). The latter number is negligible concerning the radio-hazard of the irradiated target material; however it indicates a certain affinity of the absorber foils for halogens, thus proving the principle of using noble metal foils for catching these volatile radionuclides. The total amounts of 129I and 36Cl in the target were estimated from the analytical data by averaging within the different groups of samples and summing up these averages over the total target. This estimation could account for about half of the amount of 129I and 36Cl predicted to be produced using nuclear physics modelling codes for both nuclides. The significance of the results and the associated uncertainties are discussed.
Resumo:
This article aims at presenting an already existing research project. The Repertorium Academicum Germanicum (RAG) is supposed to be a "Who’s who" of the graduated and noble scholars of the late medieval Empire. It is designed to record biographical and social data of graduated theologians, jurists, physicians and Masters of Art as well as data of nobles from universities between 1250 and 1550. Furthermore, the project focuses on their examinations, networks, fields of activity in ecclesiastical and secular offices as well as their achievements and legacies (books, treatises, tombs etc). Right now, over 49.000 prosopographic entries are stored in the RAG database, partly available online (www.rag-online.org) and combined with digital maps (infographics), which already provide a basis for research in academic mobility determined by the top scholars of the time. In a next step, it should be possible to draw conclusions not only about personnel and knowledge transfer from university to society, its effects on political systems, daily life, the emergence of new occupational groups and professions, but also about cultural exchange within Europe.
Resumo:
We analyzed cosmogenic nuclides in metal and/or silicate (primarily olivine) separated from the main-group pallasites Admire, Ahumada, Albin, Brahin, Brenham, Esquel, Finmarken, Glorieta Mountain, Huckitta, Imilac, Krasnojarsk, Marjalahti, Molong, Seymchan, South Bend, Springwater, and Thiel Mountains and from Eagle Station. The metal separates contained an olivine fraction which although small, <1 wt% in most cases, nonetheless contributes significantly to the budgets of some nuclides (e.g., up to 35% for Ne-21 and Al-26). A correction for olivine is therefore essential and was made using model calculations and/or empirical relations for the production rates of cosmogenic nuclides in iron meteoroids and/or measured elemental concentrations. Cosmic-ray exposure (CRE) ages for the metal phases of the main-group pallasites range from 7 to 180 Ma, but many of the ages cluster around a central peak near 100 Ma. These CRE ages suggest that the parent body of the main-group pallasites underwent a major break-up that produced most of the meteorites analyzed. The CRE age distribution for the pallasites overlaps only a small fraction of the distribution for the IIIAB iron meteorites. Most pallasites and IIIAB irons originated in different collisions, probably on different parent bodies; a few IIIABs and pallasites may have come out of the same collision but a firm conclusion requires further study. CRE ages calculated from noble gas and radionuclide data of the metal fraction are higher on average than the Ne-21 exposure ages obtained for the olivine samples. As the metal and olivine fractions were taken in most cases from different specimens, the depth-dependency of the production rate ratio Be-10/Ne-21 in metal, not accounted for in our calculations, may explain the difference.
Resumo:
An obstacle for establishing the chronology of iron meteorite formation using 182Hf-182W systematics (t1/2 = 8.9 Myr) is to find proper neutron fluence monitors to correct for cosmic ray modification of W isotopic composition. Recent studies showed that siderophile elements such as Pt and Os could serve such a purpose. To test and calibrate these neutron dosimeters, the isotopic compositions of W and Os were measured in a slab of the IID iron meteorite Carbo. This slab has a well-characterized noble gas depth profile reflecting different degrees of shielding to cosmic rays. The results show that W and Os isotopic ratios correlate with distance from the pre-atmospheric center. Negative correlations, barely resolved within error, were found between epsilo190Os-epsilo189Os and epsilo186Os-epsilo189Os with slopes of -0.64 ± 0.45 and -1.8(+1.9/-2.1), respectively. These Os isotope correlations broadly agree with model predictions for capture of secondary neutrons produced by cosmic ray irradiation and results reported previously for other groups of iron meteorites. Correlations were also found between epsilo182W-epsilo189Os (slope = 1.02 ± 0.37) and epsilo182W-epsilo190Os (slope = -1.38 ± 0.58). Intercepts of these two correlations yield pre-exposure epsilo182W values of -3.32 ± 0.51 and -3.62 ± 0.23, respectively (weighted average epsilo182W = -3.57 ± 0.21). This value relies on a large extrapolation leading to a large uncertainty but gives a metal-silicate segregation age of -0.5 ± 2.4 Myr after formation of the solar system. Combining the iron meteorite measurements with simulations of cosmogenic effects in iron meteorites, equations are presented to calculate and correct for cosmogenic effects on 182W using Os isotopes.
Resumo:
In preparation for the Russian Luna-Resurs mission we combined our compact time-of-flight mass spectrometer (TOF-MS) with a chemical pre-separation of the species by gas chromatography (GC). Coupled measurements with both instruments were successfully performed with the prototype of the mass spectrometer and a flight-like gas chromatograph. The system was tested with two test gas mixtures, a mixture of hydrocarbons and a mixture of noble gases. Due to its capability to record mass spectra over the full mass range at once with high sensitivity and a dynamic range of up to 10(6) within 1 s, the TOF-MS system is a valuable extension of the GC analytical system. Based on the measurements with calibration gases performed with the combined GC-MS prototype and under assumption of mean characteristics for the Moon's regolith, the detection limit for volatile species in a soil sample is estimated to 2.10(-10) by mass for hydrocarbons and 2.10(-9) by mass for noble gases. (C) 2015 Elsevier Ltd. All rights reserved.