78 resultados para N-MYC DOWNSTREAM-REGULATED GENE 1 PROTEIN
Resumo:
Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. Kaposi-Novak P, Lee JS, Gomez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS. Identification of specific gene expression signatures characteristic of oncogenic pathways is an important step toward molecular classification of human malignancies. Aberrant activation of the Met signaling pathway is frequently associated with tumour progression and metastasis. In this study, we defined the Met-dependent gene expression signature using global gene expression profiling of WT and Met-deficient primary mouse hepatocytes. Newly identified transcriptional targets of the Met pathway included genes involved in the regulation of oxidative stress responses as well as cell motility, cytoskeletal organization, and angiogenesis. To assess the importance of a Met-regulated gene expression signature, a comparative functional genomic approach was applied to 242 human hepatocellular carcinomas (HCCs) and 7 metastatic liver lesions. Cluster analysis revealed that a subset of human HCCs and all liver metastases shared the Met-induced expression signature. Furthermore, the presence of the Met signature showed significant correlation with increased vascular invasion rate and microvessel density as well as with decreased mean survival time of HCC patients. We conclude that the genetically defined gene expression signatures in combination with comparative functional genomics constitute an attractive paradigm for defining both the function of oncogenic pathways and the clinically relevant subgroups of human cancers. [Abstract reproduced by permission of J Clin Invest 2006;116:1582-1595].
Resumo:
Pericyte loss is an early pathologic feature of diabetic retinopathy, consistently present in retinae of diabetic humans and animals. Because pericyte recruitment and endothelial cell survival are controlled, in part, by the angiopoietin/Tie2 ligand/receptor system, we studied the expression of angiopoietin-2 and -1 in relation to the evolution of pericyte loss in diabetic rat retinae, using quantitative retinal morphometry, and in retinae from mice with heterozygous angiopoietin deficiency (Ang-2 LacZ knock-in mice). Finally, recombinant angiopoietin-2 was injected into eyes of nondiabetic rats, and pericyte numbers were quantitated in retinal capillaries. Angiopoietin-1 protein was present in the normal maturing retina and was upregulated 2.5-fold in diabetic retinae over 3 months of diabetes. In contrast, angiopoietin-2 protein was consistently upregulated more than 30-fold in the retinae of diabetic rats, preceding the onset of pericyte loss. Heterozygous angiopoietin-2 deficiency completely prevented diabetes-induced pericyte loss and reduced the number of acellular capillary segments. Injection of angiopoietin-2 into the eyes of normal rats induced a dose-dependent pericyte loss. These data show that upregulation of angiopoietin-2 plays a critical role in the loss of pericytes in the diabetic retina.
Resumo:
BACKGROUND ; AIMS: Iron perturbations are frequently observed in nonalcoholic fatty liver disease (NAFLD). We aimed to investigate a potential association of copper status with disturbances of iron homeostasis in NAFLD. METHODS: We retrospectively studied 140 NAFLD patients and 25 control subjects. Biochemical and hepatic iron and copper parameters were analyzed. Hepatic expression of iron regulatory molecules was investigated in liver biopsy specimens by reverse-transcription polymerase chain reaction and Western blot analysis. RESULTS: NAFLD patients had lower hepatic copper concentrations than control subjects (21.9 +/- 9.8 vs 29.6 +/- 5.1 microg/g; P = .002). NAFLD patients with low serum and liver copper concentrations presented with higher serum ferritin levels (606.7 +/- 265.8 vs 224.2 +/- 176.0 mg/L; P < .001), increased prevalence of siderosis in liver biopsy specimens (36/46 vs 10/47 patients; P < .001), and with elevated hepatic iron concentrations (1184.4 +/- 842.7 vs 319.9 +/- 451.3 microg/g; P = .020). Lower serum concentrations of the copper-dependent ferroxidase ceruloplasmin (21.7 +/- 4.1 vs 30.4 +/- 6.4 mg/dL; P < .001) and decreased liver ferroportin (FP-1; P = .009) messenger RNA expression were found in these patients compared with NAFLD patients with high liver or serum copper concentrations. Accordingly, in rats, a reduced dietary copper intake was paralleled by a decreased hepatic FP-1 protein expression. CONCLUSIONS: A significant proportion of NAFLD patients should be considered copper deficient. Our results indicate that copper status is linked to iron homeostasis in NAFLD, suggesting that low copper bioavailability causes increased hepatic iron stores via decreased FP-1 expression and ceruloplasmin ferroxidase activity thus blocking liver iron export in copper-deficient subjects.
Resumo:
The exact mechanism for capillary occlusion in diabetic retinopathy is still unclear, but increased leukocyte-endothelial cell adhesion has been implicated. We examined the possibility that posttranslational modification of surface O-glycans by increased activity of core 2 transferase (UDP-Glc:Galbeta1-3GalNAcalphaRbeta-N-acetylglucoaminyltr ansferase) is responsible for increased adhesion of leukocytes to vascular endothelium in diabetes. The mean activity of core 2 transferase in polymorphonuclear leukocytes isolated from type 1 and type 2 diabetic patients was higher compared with age-matched control subjects (1,638 +/- 91 [n = 42] vs. 249 +/- 35 pmol x h(-1) x mg(-1) protein [n = 24], P = 0.00013; 1,459 +/- 194 [n = 58] vs. 334 +/- 86 [n = 11], P = 0.01). As a group, diabetic patients with retinopathy had significantly higher mean activity of core 2 transferase compared with individuals with no retinopathy. There was a significant association between enzyme activity and severity of retinopathy in type 1 and type 2 diabetic patients. There was a strong correlation between activity of core 2 transferase and extent of leukocyte adhesion to cultured retinal capillary endothelial cells for diabetic patients but not for age-matched control subjects. Results from transfection experiments using human myelocytic cell line (U937) demonstrated a direct relationship between increased activity of core 2 transferase and increased binding to cultured endothelial cells. There was no relationship between activity of core 2 transferase and HbA(1c) (P = 0.8314), serum advanced glycation end product levels (P = 0.4159), age of the patient (P = 0.7896), and duration of diabetes (P = 0.3307). On the basis that branched O-glycans formed by the action of core 2 transferase participate in leukocyte adhesion, the present data suggest the involvement of this enzyme in increased leukocyte-endothelial cell adhesion and the pathogenesis of capillary occlusion in diabetic retinopathy.
Resumo:
Randomly spread fibroblasts on fibronectin-coated elastomeric membranes respond to cyclic strain by a varying degree of focal adhesion assembly and actin reorganization. We speculated that the individual shape of the cells, which is linked to cytoskeletal structure and pre-stress, might tune these integrin-dependent mechanotransduction events. To this aim, fibronectin circles, squares and rectangles of identical surface area (2000μm(2)) were micro-contact printed onto elastomeric substrates. Fibroblasts plated on these patterns occupied the corresponding shapes. Cyclic 10% equibiaxial strain was applied to patterned cells for 30min, and changes in cytoskeleton and cell-matrix adhesions were quantified after fluorescence staining. After strain, megakaryocytic leukemia-1 protein translocated to the nucleus in most cells, indicating efficient RhoA activation independently of cell shape. However, circular and square cells (with radial symmetry) showed a significantly greater increase in the number of actin stress fibers and vinculin-positive focal adhesions after cyclic strain than rectangular (bipolar) cells of identical size. Conversely, cyclic strain induced larger changes in pY397-FAK positive focal complexes and zyxin relocation from focal adhesions to stress fibers in bipolar compared to symmetric cells. Thus, radially symmetric cells responded to cyclic strain with a larger increase in assembly, whereas bipolar cells reacted with more pronounced reorganization of actin stress fibers and matrix contacts. We conclude that integrin-mediated responses to external mechanical strain are differentially modulated in cells that have the same spreading area but different geometries, and do not only depend on mere cell size.
Resumo:
Recent investigations of the tumor microenvironment have shown that many tumors are infiltrated by inflammatory and lymphocytic cells. Increasing evidence suggests that the number, type and location of these tumor-infiltrating lymphocytes in primary tumors has prognostic value, and this has led to the development of an 'immunoscore. As well as providing useful prognostic information, the immunoscore concept also has the potential to help predict response to treatment, thereby improving decision- making with regard to choice of therapy. This predictive aspect of the tumor microenvironment forms the basis for the concept of immunoprofiling, which can be described as 'using an individual's immune system signature (or profile) to predict that patient's response to therapy' The immunoprofile of an individual can be genetically determined or tumor-induced (and therefore dynamic). Ipilimumab is the first in a series of immunomodulating antibodies and has been shown to be associated with improved overall survival in patients with advanced melanoma. Other immunotherapies in development include anti-programmed death 1 protein (nivolumab), anti-PD-ligand 1, anti-CD137 (urelumab), and anti-OX40. Biomarkers that can be used as predictive factors for these treatments have not yet been clinically validated. However, there is already evidence that the tumor microenvironment can have a predictive role, with clinical activity of ipilimumab related to high baseline expression of the immune-related genes FoxP3 and indoleamine 2,3-dioxygenase and an increase in tumor-infiltrating lymphocytes. These biomarkers could represent the first potential proposal for an immunoprofiling panel in patients for whom anti-CTLA-4 therapy is being considered, although prospective data are required. In conclusion, the evaluation of systemic and local immunological biomarkers could offer useful prognostic information and facilitate clinical decision making. The challenge will be to identify the individual immunoprofile of each patient and the consequent choice of optimal therapy or combination of therapies to be used.
Resumo:
Recent years have led to increasing interest and appreciation of the possible importance of single cell heterogeneity in various biological processes. One of the examples of phenotypic heterogeneity in bacterial populations is antibiotic tolerant persister cells. Such an antibiotic tolerance phenotype is of considerable clinical relevance since dormant bacteria can re-establish infections rapidly after the antibiotic treatment has been terminated. Up to now mechanisms for establishing the persistence phenomenon in bacteria have remained largely enigmatic. Persisters are cells considered to be in a dormant state with down regulated gene expression. Only recently small regulatory RNAs (sRNAs) have been appreciated as important regulators of gene expression in response to environmental stimuli and several theoretical studies have suggested a possible involvement of sRNAs in the mechanisms of regulated heterogeneity in bacteria. We have experimentally addressed this potential link between sRNAs and persistence/dormancy in E. coli as an example of heterogeneity. Beside classical sRNAs we are focusing also on sRNAs directly associating with and possibly regulating the ribosome, the central enzyme of gene expression. The persister and dormant cell specific sRNA profile is studied by the comparative analysis of sRNA profile changes of the whole bacterial population after antibiotic killing. From RNA-Seq data ~ 25 000 potentially stable RNA fragments were identified and initial analysis predicted ~300 of them to be dormant/persister cell specific. After further evaluation the most prominent dormant/persister cell specific sRNAs are functionally characterized and their potential role in the persistence/dormancy will be evaluated by applying genetic, molecular and biochemical tools. The potential results of this project will provide a better understanding on the molecular mechanism of bacterial persistence/dormancy and on the role of ribosome-bound sRNA molecules in fine-tuning gene expression.
Resumo:
Recent years have led to increasing interest and appreciation of the possible importance of single cell heterogeneity in various biological processes. One of the examples of phenotypic heterogeneity in bacterial populations is antibiotic tolerant persister cells. Such an antibiotic tolerance phenotype is of considerable clinical relevance since dormant bacteria can re-establish infections rapidly after the antibiotic treatment has been terminated. Up to now mechanisms for establishing the persistence phenomenon in bacteria have remained largely enigmatic. Persisters are cells considered to be in a dormant state with down regulated gene expression. Only recently small regulatory RNAs (sRNAs) have been appreciated as important regulators of gene expression in response to environmental stimuli and several theoretical studies have suggested a possible involvement of sRNAs in the mechanisms of regulated heterogeneity in bacteria. We have experimentally addressed this potential link between sRNAs and persistence/dormancy in E. coli as an example of heterogeneity. Beside classical sRNAs we are focusing also on sRNAs directly associating with and possibly regulating the ribosome, the central enzyme of gene expression. The persister and dormant cell specific sRNA profile is studied by the comparative analysis of sRNA profile changes of the whole bacterial population after antibiotic killing. From RNA-Seq data ~ 25 000 potentially stable RNA fragments were identified and initial analysis predicted ~300 of them to be dormant/persister cell specific. After further evaluation the most prominent dormant/persister cell specific sRNAs are functionally characterized and their potential role in the persistence/dormancy will be evaluated by applying genetic, molecular and biochemical tools. The potential results of this project will provide a better understanding on the molecular mechanism of bacterial persistence/dormancy and on the role of ribosome-bound sRNA molecules in fine-tuning gene expression.
Resumo:
PURPOSE Antiseptic solutions are commonly used in dentistry for a number of sterilization procedures, including harvesting of bone chips, irrigation of extraction sockets, and sterilization of osteonecrotic bone. Despite its widespread use, little information is available regarding the effects of various antiseptic solutions on bone cell viability, morphology, and the release of growth factors. MATERIALS AND METHODS The antiseptic solutions included 1) 0.5% povidone iodine (PI), 2) 0.2% chlorhexidine diguluconate (CHX), 3) 1% hydrogen peroxide (H2O2), and 4) 0.25% sodium hypochlorite (HYP). Bone samples collected from porcine mandibular cortical bone were rinsed in the antiseptic solutions for 10 minutes and assessed for cell viability using an MTS assay and protein release of transforming growth factor (TGF-β1), bone morphogenetic protein 2 (BMP2), vascular endothelial growth factor (VEGF), interleukin (IL)-1β, and receptor activator of nuclear factor κB ligand (RANKL) using an enzyme-linked immunosorbent assay at 15 minutes and 4 hours after rinsing. RESULTS After antiseptic rinsing, changes to the surface protein content showed marked alterations, with an abundant protein layer remaining on CHX-rinsed bone samples. The amount of surface protein content gradually decreased in the following order: CHX, H2O2, PI, and HYP. A similar trend was also observed for the relative cell viability from within bone samples after rinsing, with up to 6 times more viable cells found in the CHX-rinsed bone samples than in the HYP- and PI-rinsed samples. An analysis of the growth factors found that both HYP and PI had significantly lower VEGF and TGF-β1 protein release from bone samples at 15 minutes and 4 hours after rinsing compared with CHX and H2O2. A similar trend was observed for RANKL and IL-1β protein release, although no change was observed for BMP2. CONCLUSIONS The results from the present study have demonstrated that antiseptic solutions present with very different effects on bone samples after 10 minutes of rinsing. Rinsing with CHX maintained significantly higher cell viability and protein release of growth factors potent to the bone remodeling cycle.
Resumo:
UNLABELLED Bok (Bcl-2-related ovarian killer) is a Bcl-2 family member that, because of its predicted structural homology to Bax and Bak, has been proposed to be a pro-apoptotic protein. In this study, we demonstrate that Bok is highly expressed in neurons of the mouse brain but thatbokwas not required for staurosporine-, proteasome inhibition-, or excitotoxicity-induced apoptosis of cultured cortical neurons. On the contrary, we found thatbok-deficient neurons were more sensitive to oxygen/glucose deprivation-induced injuryin vitroand seizure-induced neuronal injuryin vivo Deletion ofbokalso increased staurosporine-, excitotoxicity-, and oxygen/glucose deprivation-induced cell death inbax-deficient neurons. Single-cell imaging demonstrated thatbok-deficient neurons failed to maintain their neuronal Ca(2+)homeostasis in response to an excitotoxic stimulus; this was accompanied by a prolonged deregulation of mitochondrial bioenergetics.bokdeficiency led to a specific reduction in neuronal Mcl-1 protein levels, and deregulation of both mitochondrial bioenergetics and Ca(2+)homeostasis was rescued by Mcl-1 overexpression. Detailed analysis of cell death pathways demonstrated the activation of poly ADP-ribose polymerase-dependent cell death inbok-deficient neurons. Collectively, our data demonstrate that Bok acts as a neuroprotective factor rather than a pro-death effector during Ca(2+)- and seizure-induced neuronal injuryin vitroandin vivo SIGNIFICANCE STATEMENT Bcl-2 proteins are essential regulators of the mitochondrial apoptosis pathway. The Bcl-2 protein Bok is highly expressed in the CNS. Because of its sequence similarity to Bax and Bak, Bok has long been considered part of the pro-apoptotic Bax-like subfamily, but no studies have yet been performed in neurons to test this hypothesis. Our study provides important new insights into the functional role of Bok during neuronal apoptosis and specifically in the setting of Ca(2+)- and seizure-mediated neuronal injury. We show that Bok controls neuronal Ca(2+)homeostasis and bioenergetics and, contrary to previous assumptions, exerts neuroprotective activitiesin vitroandin vivo Our results demonstrate that Bok cannot be placed unambiguously into the Bax-like Bcl-2 subfamily of pro-apoptotic proteins.
Resumo:
Chlorophyll (chl) breakdown during senescence is an integral part of plant development and leads to the accumulation of colorless catabolites. The loss of green pigment is due to an oxygenolytic opening of the porphyrin macrocycle of pheophorbide (pheide) a followed by a reduction to yield a fluorescent chl catabolite. This step is comprised of the interaction of two enzymes, pheide a oxygenase (PaO) and red chl catabolite reductase. PaO activity is found only during senescence, hence PaO seems to be a key regulator of chl catabolism. Whereas red chl catabolite reductase has been cloned, the nature of PaO has remained elusive. Here we report on the identification of the PaO gene of Arabidopsis thaliana (AtPaO). AtPaO is a Rieske-type iron–sulfur cluster-containing enzyme that is identical to Arabidopsis accelerated cell death 1 and homologous to lethal leaf spot 1 (LLS1) of maize. Biochemical properties of recombinant AtPaO were identical to PaO isolated from a natural source. Production of fluorescent chl catabolite-1 required ferredoxin as an electron source and both substrates, pheide a and molecular oxygen. By using a maize lls1 mutant, the in vivo function of PaO, i.e., degradation of pheide a during senescence, could be confirmed. Thus, lls1 leaves stayed green during dark incubation and accumulated pheide a that caused a light-dependent lesion mimic phenotype. Whereas proteins were degraded similarly in wild type and lls1, a chl-binding protein was selectively retained in the mutant. PaO expression correlated positively with senescence, but the enzyme appeared to be post-translationally regulated as well.
Resumo:
C-type lectin domain family 5, member A (CLEC5A), also known as myeloid DNAX activation protein 12 (DAP12)-associating lectin-1 (MDL-1), is a cell surface receptor strongly associated with the activation and differentiation of myeloid cells. CLEC5A associates with its adaptor protein DAP12 to activate a signaling cascade resulting in activation of downstream kinases in inflammatory responses. Currently, little is known about the transcriptional regulation of CLEC5A. We identified CLEC5A as one of the most highly induced genes in a microarray gene profiling experiment of PU.1 restored myeloid PU.1-null cells. We further report that CLEC5A expression is significantly reduced in several myeloid differentiation models upon PU.1 inhibition during monocyte/macrophage or granulocyte differentiation. In addition, CLEC5A mRNA expression was significantly lower in primary acute myeloid leukemia (AML) patient samples than in macrophages and granulocytes from healthy donors. Moreover, we found activation of a CLEC5A promoter reporter by PU.1 as well as in vivo binding of PU.1 to the CLEC5A promoter. Our findings indicate that CLEC5A expression in monocyte/macrophage and granulocytes is regulated by PU.1.
Resumo:
Background Heterochromatin protein 1 (HP1) family proteins have a well-characterized role in heterochromatin packaging and gene regulation. Their function in organismal development, however, is less well understood. Here we used genome-wide expression profiling to assess novel functions of the Caenorhabditis elegans HP1 homolog HPL-2 at specific developmental stages. Results We show that HPL-2 regulates the expression of germline genes, extracellular matrix components and genes involved in lipid metabolism. Comparison of our expression data with HPL-2 ChIP-on-chip profiles reveals that a significant number of genes up- and down-regulated in the absence of HPL-2 are bound by HPL-2. Germline genes are specifically up-regulated in hpl-2 mutants, consistent with the function of HPL-2 as a repressor of ectopic germ cell fate. In addition, microarray results and phenotypic analysis suggest that HPL-2 regulates the dauer developmental decision, a striking example of phenotypic plasticity in which environmental conditions determine developmental fate. HPL-2 acts in dauer at least partly through modulation of daf-2/IIS and TGF-β signaling pathways, major determinants of the dauer program. hpl-2 mutants also show increased longevity and altered lipid metabolism, hallmarks of the long-lived, stress resistant dauers. Conclusions Our results suggest that the worm HP1 homologue HPL-2 may coordinately regulate dauer diapause, longevity and lipid metabolism, three processes dependent on developmental input and environmental conditions. Our findings are of general interest as a paradigm of how chromatin factors can both stabilize development by buffering environmental variation, and guide the organism through remodeling events that require plasticity of cell fate regulation.
Resumo:
ABSTRACT: BACKGROUND: Hepatic sinusoidal resistance is regulated by vasoactive factors including endothelin-1 (ET-1) and nitric oxide (NO). In the absence of NO, vasoconstrictor response to endothelin is expected to predominate. Therefore, we hypothesized sensitivity to endothelin to be increased in mice lacking the endothelial cell NO synthase gene. Response of vascular resistance to endothelin was assessed in the in situ perfused liver of endothelial constitutive nitric oxide synthase (ecNOS) knockout and wild type mice. Livers were also harvested for RNA and protein isolation for quantitative PCR and Western blotting, respectively. The expression of endothelin receptors, isoenzymes of NO synthase, heme-oxygenase and adrenomedullin was quantified. RESULTS: Endothelin increased hepatic vascular resistance in a dose-dependent manner in both strains; however, this increase was significantly less in ecNOS knockout mice at physiologic concentrations. Expression of heme-oxygenases and adrenomedullin was similar in both groups, whereas inducible nitric oxide synthase (iNOS) protein was not detectable in either strain. mRNA levels of pre-pro-endothelin-1 and ETB receptor were comparable in both strains, while mRNA for ETA receptor was decreased in ecNOS knockouts. CONCLUSION: Livers of ecNOS knockout mice have a decreased sensitivity to endothelin at physiologic concentrations; this is associated with a decreased expression of ETA receptors, but not with other factors, such as iNOS, ETB receptors, adrenomedullin or heme-oxygenase. Further studies targeting adaptive changes in ETA receptor distribution and/or intracellular signaling downstream of the receptor are indicated.
Resumo:
We have identified a novel cytosine/thymidine polymorphism of the human steroidogenic acute regulatory (StAR) gene promoter located 3 bp downstream of the steroidogenic factor-1 (SF-1)-binding site and 9 bp upstream of the TATA box (ATTTAAG). Carriers of this mutation have a high prevalence of primary aldosteronism. In transfection experiments, basal StAR promoter activity was unaltered by the mutation in murine Y-1 cells and human H295R cells. In Y-1 cells, forskolin (25 microM, 6 h) significantly increased wild-type promoter activity to 230+/-33% (P<0.05, n=4). In contrast, forskolin increased mutated promoter activity only to 150+/-27%, with a significant 35% reduction compared to wild type (P<0.05, n=3). In H295R cells, angiotensin II (AngII; 10 nM) increased wild-type StAR promoter activity to 265+/-22% (P<0.01, n=3), while mutated StAR promoter activity in response to AngII only reached 180+/-29% of controls (P< 0.01, n=3). Gel mobility shift assays show the formation of two additional complexes with the mutated promoter: one with the transcription repressor DAX-1 and another with a yet unidentified factor, which strongly binds the SF-1 response element. Thus, this novel mutation in the human StAR promoter is critically involved in the regulation of StAR gene expression and is associated with reduced promoter activity, a finding relevant for adrenal steroid response to physiological stimulators.