72 resultados para Multimodal analyses
Resumo:
Microarrays have established as instrumental for bacterial detection, identification, and genotyping as well as for transcriptomic studies. For gene expression analyses using limited numbers of bacteria (derived from in vivo or ex vivo origin, for example), RNA amplification is often required prior to labeling and hybridization onto microarrays. Evaluation of the fidelity of the amplification methods is crucial for the robustness and reproducibility of microarray results. We report here the first utilization of random primers and the highly processive Phi29 phage polymerase to amplify material for transcription profiling analyses. We compared two commercial amplification methods (GenomiPhi and MessageAmp kits) with direct reverse-transcription as the reference method, focusing on the robustness of mRNA quantification using either microarrays or quantitative RT-PCR. Both amplification methods using either poly-A tailing followed by in vitro transcription, or direct strand displacement polymerase, showed appreciable linearity. Strand displacement technique was particularly affordable compared to in vitro transcription-based (IVT) amplification methods and consisted in a single tube reaction leading to high amplification yields. Real-time measurements using low-, medium-, and highly expressed genes revealed that this simple method provided linear amplification with equivalent results in terms of relative messenger abundance as those obtained by conventional direct reverse-transcription.
Resumo:
OBJECTIVES: Implementation of an experimental model to compare cartilage MR imaging by means of histological analyses. MATERIAL AND METHODS: MRI was obtained from 4 patients expecting total knee replacement at 1.5 and/or 3T prior surgery. The timeframe between pre-op MRI and knee replacement was within two days. Resected cartilage-bone samples were tagged with Ethi((R))-pins to reproduce the histological cutting course. Pre-operative scanning at 1.5T included following parameters for fast low angle shot (FLASH: TR/TE/FA=33ms/6ms/30 degrees , BW=110kHz, 120mmx120mm FOV, 256x256 matrix, 0.65mm slice-thickness) and double echo steady state (DESS: TR/TE/FA=23.7ms/6.9ms/40 degrees , BW=130kHz, 120x120mm FOV, 256x256 matrix, 0.65mm slice-thickness). At 3T, scan parameters were: FLASH (TR/TE/FA=12.2ms/5.1ms/10 degrees , BW=130kHz, 170x170mm FOV, 320x320, 0.5mm slice-thickness) and DESS (TR/TE/FA=15.6ms/4.5ms/25 degrees , BW=200kHz, 135mmx150mm FOV, 288x320matrix, 0.5mm slice-thickness). Imaging of the specimens was done the same day at 1.5T. MRI (Noyes) and histological (Mankin) score scales were correlated using the paired t-test. Sensitivity and specificity for the detection of different grades of cartilage degeneration were assessed. Inter-reader and intra-reader reliability was determined using Kappa analysis. RESULTS: Low correlation (sensitivity, specificity) was found for both sequences in normal to mild Mankin grades. Only moderate to severe changes were diagnosed with higher significance and specificity. The use of higher field-strengths was advantageous for both protocols with sensitivity values ranging from 13.6% to 93.3% (FLASH) and 20.5% to 96.2% (DESS). Kappa values ranged from 0.488 to 0.944. CONCLUSIONS: Correlating MR images with continuous histological slices was feasible by using three-dimensional imaging, multi-planar-reformat and marker pins. The capability of diagnosing early cartilage changes with high accuracy could not be proven for both FLASH and DESS.
Resumo:
Bronchus stump insufficiency (BSI) is one of the major complications after pneumonectomy; we analyzed all patients who underwent extra pleural pneumonectomy (EPP) for malignant pleural mesothelioma (MPM) in order to detect the role of muscle flap (MF) on preventing early and late stump insufficiency. From January 2000 until December 2005, there were 42 patients admitted with MPM for further intervention at our institution. Thirty patients were suitable for surgery and thus received a multimodal treatment with neo-adjuvant chemotherapy using Cisplatin and Gemcitabin (Gemzar), EPP followed by 54 Gray (Gy) adjuvant radiotherapy. Data were collected from the surgical and oncological records. There were 37 male patients (88%), the median age was 65 years (range 40-83 years). Seven (17%) patients had concomitant diseases. Forty patients (95%) had asbestos exposition. The operative procedures were EPP with muscle flap through an anterolateral thoracotomy. Univariate and multivariate analyses were done. One patient (3%) died on the 2nd postoperative day due to lung embolism. Mild complications were noticed in the early postoperative phase in 8 (25%) patients. There was no early or late stump insufficiency during the 15-month follow-up. Surgical techniques using muscle flap seems to play a major role in the prevention of bronchus stump insufficiency especially after neo-adjuvant chemotherapy.
Resumo:
While voxel-based 3-D MRI analysis methods as well as assessment of subtracted ictal versus interictal perfusion studies (SISCOM) have proven their potential in the detection of lesions in focal epilepsy, a combined approach has not yet been reported. The present study investigates if individual automated voxel-based 3-D MRI analyses combined with SISCOM studies contribute to an enhanced detection of mesiotemporal epileptogenic foci. Seven consecutive patients with refractory complex partial epilepsy were prospectively evaluated by SISCOM and voxel-based 3-D MRI analysis. The functional perfusion maps and voxel-based statistical maps were coregistered in 3-D space. In five patients with temporal lobe epilepsy (TLE), the area of ictal hyperperfusion and corresponding structural abnormalities detected by 3-D MRI analysis were identified within the same temporal lobe. In two patients, additional structural and functional abnormalities were detected beyond the mesial temporal lobe. Five patients with TLE underwent epileptic surgery with favourable postoperative outcome (Engel class Ia and Ib) after 3-5 years of follow-up, while two patients remained on conservative treatment. In summary, multimodal assessment of structural abnormalities by voxel-based analysis and SISCOM may contribute to advanced observer-independent preoperative assessment of seizure origin.
Resumo:
OBJECTIVE: To study the inter-observer variation related to extraction of continuous and numerical rating scale data from trial reports for use in meta-analyses. DESIGN: Observer agreement study. DATA SOURCES: A random sample of 10 Cochrane reviews that presented a result as a standardised mean difference (SMD), the protocols for the reviews and the trial reports (n=45) were retrieved. DATA EXTRACTION: Five experienced methodologists and five PhD students independently extracted data from the trial reports for calculation of the first SMD result in each review. The observers did not have access to the reviews but to the protocols, where the relevant outcome was highlighted. The agreement was analysed at both trial and meta-analysis level, pairing the observers in all possible ways (45 pairs, yielding 2025 pairs of trials and 450 pairs of meta-analyses). Agreement was defined as SMDs that differed less than 0.1 in their point estimates or confidence intervals. RESULTS: The agreement was 53% at trial level and 31% at meta-analysis level. Including all pairs, the median disagreement was SMD=0.22 (interquartile range 0.07-0.61). The experts agreed somewhat more than the PhD students at trial level (61% v 46%), but not at meta-analysis level. Important reasons for disagreement were differences in selection of time points, scales, control groups, and type of calculations; whether to include a trial in the meta-analysis; and data extraction errors made by the observers. In 14 out of the 100 SMDs calculated at the meta-analysis level, individual observers reached different conclusions than the originally published review. CONCLUSIONS: Disagreements were common and often larger than the effect of commonly used treatments. Meta-analyses using SMDs are prone to observer variation and should be interpreted with caution. The reliability of meta-analyses might be improved by having more detailed review protocols, more than one observer, and statistical expertise.
Resumo:
OBJECTIVE: The aim of the present pilot study is to show initial results of a multimodal approach using clinical scoring, morphological magnetic resonance imaging (MRI) and biochemical T2-relaxation and diffusion-weighted imaging (DWI) in their ability to assess differences between cartilage repair tissue after microfracture therapy (MFX) and matrix-associated autologous chondrocyte transplantation (MACT). METHOD: Twenty patients were cross-sectionally evaluated at different post-operative intervals from 12 to 63 months after MFX and 12-59 months after MACT. The two groups were matched by age (MFX: 36.0+/-10.4 years; MACT: 35.1+/-7.7 years) and post-operative interval (MFX: 32.6+/-16.7 months; MACT: 31.7+/-18.3 months). After clinical evaluation using the Lysholm score, 3T-MRI was performed obtaining the MR observation of cartilage repair tissue (MOCART) score as well as T2-mapping and DWI for multi-parametric MRI. Quantitative T2-relaxation was achieved using a multi-echo spin-echo sequence; semi-quantitative diffusion-quotient (signal intensity without diffusion-weighting divided by signal intensity with diffusion weighting) was prepared by a partially balanced, steady-state gradient-echo pulse sequence. RESULTS: No differences in Lysholm (P=0.420) or MOCART (P=0.209) score were observed between MFX and MACT. T2-mapping showed lower T2 values after MFX compared to MACT (P=0.039). DWI distinguished between healthy cartilage and cartilage repair tissue in both procedures (MFX: P=0.001; MACT: P=0.007). Correlations were found between the Lysholm and the MOCART score (Pearson: 0.484; P=0.031), between the Lysholm score and DWI (Pearson:-0.557; P=0.011) and a trend between the Lysholm score and T2 (Person: 0.304; P=0.193). CONCLUSION: Using T2-mapping and DWI, additional information could be gained compared to clinical scoring or morphological MRI. In combination clinical, MR-morphological and MR-biochemical parameters can be seen as a promising multimodal tool in the follow-up of cartilage repair.
Resumo:
Integrating evidence from different imaging modalities is important to overcome specific limitations of any given imaging method, such as insensitivity of the EEG to unsynchronized neural events, or the lack of fMRI sensitivity to events of low metabolic demand. Processes that are visible in one modality may be related in a nontrivial way to other processes visible in another modality and insight may only be obtained by integrating both methods through a common analysis. For example, brain activity at rest seems to be at least partly determined by an interaction of cortical rhythms (visible to EEG but not to fMRI) with sub-cortical activity (visible to fMRI, but usually not to EEG without averaging). A combination of EEG and fMRI data during rest may thus be more informative than the sum of two separate analyses in both modalities. Integration is also an important source of converging evidence about specific aspects and general principles of neural functions and their dysfunctions in certain pathologies. This is because not only electrical, but also energetic, biochemical, hemodynamic and metabolic processes characterize neural states and functions, and because brain structure provides crucial constraints upon neural functions. Focusing on multimodal integration of functional data should not distract from the privileged status of the electric field as the primary direct, noninvasive real-time measure of neural transmission. The preceding chapters illustrate how electrical neuroimaging has turned scalp EEG into an imaging modality which directly captures the full temporal dynamics of neural activity in the brain.