68 resultados para Multi-level analyses
Resumo:
This paper examines how local communities adapt to climate change and how governance structures can foster or undermine adaptive capacity. Climate change policies, in general, and disaster risk management in mountain regions, in particular, are characterised by their multi-level and multi-sectoral nature during formulation and implementation. The involvement of numerous state and non-state actors at local to national levels produces a variety of networks of interaction and communication. The paper argues that the structure of these relational patterns is critical for understanding adaptive capacity. It thus proposes an expanded concept of adaptive capacity that incorporates (horizontal and vertical) actor integration and communication flow between these actors. The paper further advocates the use of formal social network analysis to assess these relational patterns. Preliminary results from research on adaptation to climate change in a Swiss mountain region vulnerable to floods and other natural hazards illustrate the conceptual and empirical significance of the main arguments.
Resumo:
This brochure deals with policies and policy instruments needed to promote sustainable development in mountain areas. The first part presents an overview of key issues in mountain development, and principles and strategies that should be adopted. Each principle contains a checklist for policy-makers. The second part presents national and regional case studies of successful approaches and initiatives relating to mountain policy from all over the world. The brochure concludes with a call for multi-level initiatives and partnerships. This full-colour publication is part of the Mountains of the World series. It was prepared for the 2002 World Summit on Sustainable Development in Johannesburg by an international panel of experts coordinated by CDE. It was commissioned and funded by the Swiss Agency for Development and Cooperation (SDC).
Resumo:
PURPOSE The impact of cardiopulmonary bypass in level III-IV tumor thrombectomy on surgical and oncologic outcomes is unknown. We determine the impact of cardiopulmonary bypass on overall and cancer specific survival, as well as surgical complication rates and immediate outcomes in patients undergoing nephrectomy and level III-IV tumor thrombectomy with or without cardiopulmonary bypass. MATERIALS AND METHODS We retrospectively analyzed 362 patients with renal cell cancer and with level III or IV tumor thrombus from 1992 to 2012 at 22 U.S. and European centers. Cox proportional hazards models were used to compare overall and cancer specific survival between patients with and without cardiopulmonary bypass. Perioperative mortality and complication rates were assessed using logistic regression analyses. RESULTS Median overall survival was 24.6 months in noncardiopulmonary bypass cases and 26.6 months in cardiopulmonary bypass cases. Overall survival and cancer specific survival did not differ significantly in both groups on univariate analysis or when adjusting for known risk factors. On multivariate analysis no significant differences were seen in hospital length of stay, Clavien 1-4 complication rate, intraoperative or 30-day mortality and cancer specific survival. Limitations include the retrospective nature of the study. CONCLUSIONS In our multi-institutional analysis the use of cardiopulmonary bypass did not significantly impact cancer specific survival or overall survival in patients undergoing nephrectomy and level III or IV tumor thrombectomy. Neither approach was independently associated with increased mortality on multivariate analysis. Greater surgical complications were not independently associated with the use of cardiopulmonary bypass.
Resumo:
Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20\% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning.
Resumo:
Most of the policy debate surrounding the actions needed to mitigate and adapt to anthropogenic climate change has been framed by observations of the past 150 years as well as climate and sea-level projections for the twenty-first century. The focus on this 250-year window, however, obscures some of the most profound problems associated with climate change. Here, we argue that the twentieth and twenty-first centuries, a period during which the overwhelming majority of human-caused carbon emissions are likely to occur, need to be placed into a long-term context that includes the past 20 millennia, when the last Ice Age ended and human civilization developed, and the next ten millennia, over which time the projected impacts of anthropogenic climate change will grow and persist. This long-term perspective illustrates that policy decisions made in the next few years to decades will have profound impacts on global climate, ecosystems and human societies — not just for this century, but for the next ten millennia and beyond.