100 resultados para Mirror neurons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Population coding is widely regarded as a key mechanism for achieving reliable behavioral decisions. We previously introduced reinforcement learning for population-based decision making by spiking neurons. Here we generalize population reinforcement learning to spike-based plasticity rules that take account of the postsynaptic neural code. We consider spike/no-spike, spike count and spike latency codes. The multi-valued and continuous-valued features in the postsynaptic code allow for a generalization of binary decision making to multi-valued decision making and continuous-valued action selection. We show that code-specific learning rules speed up learning both for the discrete classification and the continuous regression tasks. The suggested learning rules also speed up with increasing population size as opposed to standard reinforcement learning rules. Continuous action selection is further shown to explain realistic learning speeds in the Morris water maze. Finally, we introduce the concept of action perturbation as opposed to the classical weight- or node-perturbation as an exploration mechanism underlying reinforcement learning. Exploration in the action space greatly increases the speed of learning as compared to exploration in the neuron or weight space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The flower gene has been previously linked to the elimination of slow dividing epithelial cells during development in a process known as "cell competition." During cell competition, different isoforms of the Flower protein are displayed at the cell membrane and reveal the reduced fitness of slow proliferating cells, which are therefore recognized, eliminated, and replaced by their normally dividing neighbors. This mechanism acts as a "cell quality" control in proliferating tissues. RESULTS: Here, we use the Drosophila eye as a model to study how unwanted neurons are culled during retina development and find that flower is required and sufficient for the recognition and elimination of supernumerary postmitotic neurons, contained within incomplete ommatidia units. This constitutes the first description of the "Flower Code" functioning as a cell selection mechanism in postmitotic cells and is also the first report of a physiological role for this cell quality control machinery. CONCLUSIONS: Our results show that the "Flower Code" is a general system to reveal cell fitness and that it may play similar roles in creating optimal neural networks in higher organisms. The Flower Code seems to be a more general mechanism for cell monitoring and selection than previously recognized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The myelin-associated protein Nogo-A and its receptor Nogo-receptor 1 (NgR1) are known as potent growth inhibitors of the adult central nervous system (CNS). Nogo-A is mostly expressed on the surface of oligodendrocytes, but is also found in neurons of the adult and developing CNS. This observation suggests that Nogo-A serves additional functions in the brain. Hence, in the present study, we investigated the effects of antagonizing NgR1 on cultured organotypic and dissociated dopaminergic neurons. For that purpose ventral mesencephalic cultures from E14 rat embryos were grown in absence or presence of the NgR1 antagonist NEP1-40 for 1 week. Treatment with NEP1-40 significantly increased cell densities of tyrosine hydroxylase-immunoreactive neurons. Moreover, organotypic ventral mesencephalic cultures displayed a significantly bigger volume after NEP1-40 treatment. Morphological analysis of tyrosine hydroxylase-positive neurons disclosed longer neurites and higher numbers of primary neurites in dissociated cultures incubated with NEP1-40, whereas soma size was not changed. In conclusion, our findings demonstrate that interfering with Nogo-A signaling by antagonizing NgR1 modulates dopaminergic neuron properties during development. These observations highlight novel aspects of the role of Nogo-A in the CNS and might have an impact in the context of Parkinson's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-dependent calcium channels (VDCCs) serve a wide range of physiological functions and their activity is modulated by different neurotransmitter systems. GABAergic inhibition of VDCCs in neurons has an important impact in controlling transmitter release, neuronal plasticity, gene expression and neuronal excitability. We investigated the molecular signalling mechanisms by which GABAB receptors inhibit calcium-mediated electrogenesis (Ca2+ spikes) in the distal apical dendrite of cortical layer 5 pyramidal neurons. Ca2+ spikes are the basis of coincidence detection and signal amplification of distal tuft synaptic inputs characteristic for the computational function of cortical pyramidal neurons. By combining dendritic whole-cell recordings with two-photon fluorescence Ca2+ imaging we found that all subtypes of VDCCs were present in the Ca2+ spike initiation zone, but that they contribute differently to the initiation and sustaining of dendritic Ca2+ spikes. Particularly, Cav1 VDCCs are the most abundant VDCC present in this dendritic compartment and they generated the sustained plateau potential characteristic for the Ca2+ spike. Activation of GABAB receptors specifically inhibited Cav1 channels. This inhibition of L-type Ca2+ currents was transiently relieved by strong depolarization but did not depend on protein kinase activity. Therefore, our findings suggest a novel membrane-delimited interaction of the Gi/o-βγ-subunit with Cav1 channels identifying this mechanism as the general pathway of GABAB receptor-mediated inhibition of VDCCs. Furthermore, the characterization of the contribution of the different VDCCs to the generation of the Ca2+ spike provides new insights into the molecular mechanism of dendritic computation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain trauma can disrupt synaptic connections, and this in turn can prompt axons to sprout and form new connections. If these new axonal connections are aberrant, hyperexcitability can result. It has been shown that ablating tropomyosin-related kinase B (TrkB), a receptor for brain-derived neurotrophic factor (BDNF), can reduce axonal sprouting after hippocampal injury. However, it is unknown whether inhibiting BDNF-mediated axonal sprouting will reduce hyperexcitability. Given this, our purpose here was to determine whether pharmacologically blocking BDNF inhibits hyperexcitability after injury-induced axonal sprouting in the hippocampus. To induce injury, we made Schaffer collateral lesions in organotypic hippocampal slice cultures. As reported by others, we observed a 50% reduction in axonal sprouting in cultures treated with a BDNF blocker (TrkB-Fc) 14 days after injury. Furthermore, lesioned cultures treated with TrkB-Fc were less hyperexcitable than lesioned untreated cultures. Using electrophysiology, we observed a two-fold decrease in the number of CA3 neurons that showed bursting responses after lesion with TrkB-Fc treatment, whereas we found no change in intrinsic neuronal firing properties. Finally, evoked field excitatory postsynaptic potential recordings indicated an increase in network activity within area CA3 after lesion, which was prevented with chronic TrkB-Fc treatment. Taken together, our results demonstrate that blocking BDNF attenuates injury-induced hyperexcitability of hippocampal CA3 neurons. Axonal sprouting has been found in patients with post-traumatic epilepsy. Therefore, our data suggest that blocking the BDNF-TrkB signaling cascade shortly after injury may be a potential therapeutic target for the treatment of post-traumatic epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synaptic plasticity rules change during development: while hippocampal synapses can be potentiated by a single action potential pairing protocol in young neurons, mature neurons require burst firing to induce synaptic potentiation. An essential component for spike timing-dependent plasticity is the backpropagating action potential (BAP). BAP along the dendrites can be modulated by morphology and ion channel composition, both of which change during late postnatal development. However it is unclear whether these dendritic changes can explain the developmental changes in synaptic plasticity induction rules. Here, we show that tonic GABAergic inhibition regulates dendritic action potential backpropagation in adolescent but not pre-adolescent CA1 pyramidal neurons. These developmental changes in tonic inhibition also altered the induction threshold for spike timing-dependent plasticity in adolescent neurons. This GABAergic regulatory effect upon backpropagation is restricted to distal regions of apical dendrites (>200 μm) and mediated by α5-containing GABA(A) receptors. Direct dendritic recordings demonstrate α5-mediated tonic GABA(A) currents in adolescent neurons which can modulate backpropagating action potentials. These developmental modulations in dendritic excitability could not be explained by concurrent changes in dendritic morphology. To explain our data, model simulations propose a distally-increasing or localized distal expression of dendritic α5 tonic inhibition in mature neurons. Overall, our results demonstrate that dendritic integration and plasticity in more mature dendrites are significantly altered by tonic α5 inhibition in a dendritic region-specific and developmentally-regulated manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons of the hippocampal dentate gyrus selectively undergo programmed cell death in patients suffering from bacterial meningitis and in experimental models of pneumococcal meningitis in infant rats. In the present study, a membrane-based organotypic slice culture system of rat hippocampus was used to test whether this selective vulnerability of neurons of the dentate gyrus could be reproduced in vitro. Apoptosis was assessed by nuclear morphology (condensed and fragmented nuclei), by immunochemistry for active caspase-3 and deltaC-APP, and by proteolytic caspase-3 activity. Co-incubation of the cultures with live pneumococci did not induce neuronal apoptosis unless cultures were kept in partially nutrient-deprived medium. Complete nutrient deprivation alone and staurosporine independently induced significant apoptosis, the latter in a dose-response way. In all experimental settings, apoptosis occurred preferentially in the dentate gyrus. Our data demonstrate that factors released by pneumococci per se failed to induce significant apoptosis in vitro. Thus, these factors appear to contribute to a multifactorial pathway, which ultimately leads to neuronal apoptosis in bacterial meningitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate unconscious priming by the use of a spatial mirror-masking paradigm. Words and nonwords with no under-length letters are mirrored at their horizontal axis. The results are figures of geometric-like forms that contain letters in their upper part. In the three experiments reported in this study, a priming procedure used such mirrored words and nonwords as primes. Participants were ignorant of the nature of the construction of the stimuli. Perceptual reports of the participants revealed that they did not realize that words were hidden in the primes. Nevertheless, they showed priming in all three experiments. Priming effects were replicated with prime–target SOAs of between 1 and 3 s. Functional dissociations were found between ignorant and informed participants. Informed groups showed perceptual and semantic priming, while ignorant groups showed only perceptual priming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyclic peptide Melanin Concentrating Hormone (MCH) is known to control a large number of brain functions in mammals such as food intake and metabolism, stress response, anxiety, sleep/wake cycle, memory, and reward. Based on neuro-anatomical and electrophysiological studies these functions were attributed to neuronal circuits expressing MCHR1, the single MCH receptor in rodents. In complement to our recently published work (1) we provided here new data regarding the action of MCH on ependymocytes in the mouse brain. First, we establish that MCHR1 mRNA is expressed in the ependymal cells of the third ventricle epithelium. Second, we demonstrated a tonic control of MCH-expressing neurons on ependymal cilia beat frequency using in vitro optogenics. Finally, we performed in vivo measurements of CSF flow using fluorescent micro-beads in wild-type and MCHR1-knockout mice. Collectively, our results demonstrated that MCH-expressing neurons modulate ciliary beating of ependymal cells at the third ventricle and could contribute to maintain cerebro-spinal fluid homeostasis.