88 resultados para Microbial loop
Resumo:
Genomic approaches continue to provide unprecedented insight into the microbiome, yet host immune interactions with diverse microbiota can be difficult to study. We therefore generated a microbial microarray containing defined antigens isolated from a broad range of microbial flora to examine adaptive and innate immunity. Serological studies with this microarray show that immunoglobulins from multiple mammalian species have unique patterns of reactivity, whereas exposure of animals to distinct microbes induces specific serological recognition. Although adaptive immunity exhibited plasticity toward microbial antigens, immunological tolerance limits reactivity toward self. We discovered that several innate immune galectins show specific recognition of microbes that express self-like antigens, leading to direct killing of a broad range of Gram-negative and Gram-positive microbes. Thus, host protection against microbes seems to represent a balance between adaptive and innate immunity to defend against evolving antigenic determinants while protecting against molecular mimicry.
Resumo:
We derive the fermion loop formulation of N=4 supersymmetric SU(N) Yang-Mills quantum mechanics on the lattice. The loop formulation naturally separates the contributions to the partition function into its bosonic and fermionic parts with fixed fermion number and provides a way to control potential fermion sign problems arising in numerical simulations of the theory. Furthermore, we present a reduced fermion matrix determinant which allows the projection into the canonical sectors of the theory and hence constitutes an alternative approach to simulate the theory on the lattice.
Resumo:
In this article we calculate the one-loop supersymmetric QCD (SQCD) corrections to the decay u˜1→cχ˜01 in the minimal supersymmetric standard model with generic flavor structure. This decay mode is phenomenologically important if the mass difference between the lightest squark u˜1 (which is assumed to be mainly stoplike) and the neutralino lightest supersymmetric particle χ˜01 is smaller than the top mass. In such a scenario u˜1→tχ˜01 is kinematically not allowed and searches for u˜1→Wbχ˜01 and u˜1→cχ˜01 are performed. A large decay rate for u˜1→cχ˜01 can weaken the LHC bounds from u˜1→Wbχ01 which are usually obtained under the assumption Br[u˜1→Wbχ01]=100%. We find the SQCD corrections enhance Γ[u˜1→cχ˜01] by approximately 10% if the flavor violation originates from bilinear terms. If flavor violation originates from trilinear terms, the effect can be ±50% or more, depending on the sign of At. We note that connecting a theory of supersymmetry breaking to LHC observables, the shift from the DR¯¯¯¯¯ to the on-shell mass is numerically very important for light stop decays.
Resumo:
γ-Aminobutyric acid type A receptors (GABAA receptors) are chloride ion channels composed of five subunits, mediating fast synaptic and tonic inhibition in the mammalian brain. These receptors show near five-fold symmetry that is most pronounced in the second trans-membrane domain M2 lining the Cl- ion channel. To take advantage of this inherent symmetry, we screened a variety of aromatic anions with matched symmetry and found an inhibitor, pentacyanocyclopentdienyl anion (PCCP-) that exhibited all characteristics of an open channel blocker. Inhibition was strongly dependent on the membrane potential. Through mutagenesis and covalent modification, we identified the region α1V256-α1T261 in the rat recombinant GABAA receptor to be important for PCCP- action. Introduction of positive charges into M2 increased the affinity for PCCP- while PCCP- prevented the access of a positively charged molecule into M2. Interestingly, other anion selective cys-loop receptors were also inhibited by PCCP-, among them the Drosophila RDL GABAA receptor carrying an insecticide resistance mutation, suggesting that PCCP- could serve as an insecticide.
Resumo:
Systemic immune activation, a major determinant of HIV disease progression, is the result of a complex interplay between viral replication, dysregulation of the immune system, and microbial translocation due to gut mucosal damage. While human genetic variants influencing HIV viral load have been identified, it is unknown to what extent the host genetic background contributes to inter-individual differences in other determinants of HIV pathogenesis like gut damage and microbial translocation. Using samples and data from 717 untreated participants in the Swiss HIV Cohort Study and a genome-wide association study design, we searched for human genetic determinants of plasma levels of intestinal fatty-acid binding protein (I-FABP/FABP2), a marker of gut damage, and of soluble sCD14 (sCD14), a marker of LPS bioactivity and microbial translocation. We also assessed the correlations between HIV viral load, sCD14 and I-FABP. While we found no genome-wide significant determinant of the tested plasma markers, we observed strong associations between sCD14 and both HIV viral load and I-FABP, shedding new light on the relationships between processes that drive progression of untreated HIV infection.
Resumo:
Simulations of supersymmetric field theories on the lattice with (spontaneously) broken supersymmetry suffer from a fermion sign problem related to the vanishing of the Witten index. We propose a novel approach which solves this problem in low dimensions by formulating the path integral on the lattice in terms of fermion loops. For N=2 supersymmetric quantum mechanics the loop formulation becomes particularly simple and in this paper – the first in a series of three – we discuss in detail the reformulation of this model in terms of fermionic and bosonic bonds for various lattice discretisations including one which is Q-exact.
Resumo:
We report the expression of a linear reporter construct in isolated human mitochondria. The reporter construct contained the entire human D-Loop with adjacent tRNA (MTT) genes (mt.15956-647), the human ND1 gene with an in frame GFP gene and adjacent endogenous MTT genes and heterologous rat MTT genes. Natural competence of isolated human mitochondria of HepG2 cells was used to import reporter constructs. The import efficiency of various fluorescently labelled PCR-generated import substrates in the range of 250bp up to 3.5kb was assessed by quantitative PCR and evaluated by confocal microscopy. Heterologous expression of the imported construct was confirmed at RNA level by a circular RNA (cRNA)-RT-PCR assay for the expression of tRNAs and by in organello [α-(32)P]-UTP labelling and subsequent hybridisation to reporter-specific sequences for monitoring mRNA expression. Heterologous expression of rat mitochondrial tRNA(Leu(UUR)) (rMT-TL1) was confirmed by co-/post-transcriptional trinucleotide (CCA) addition. Interestingly, the rat-specific MT-TL1 was correctly processed in isolated human mitochondria at the 3' end, but showed an aberrant 5' end processing. Correct 3' end processing of the heterologous expressed mitochondrial rat tRNA(Ser2) (MT-TS2) was detected. These findings demonstrate the feasibility of genetic manipulation of human mitochondria, providing a tool for characterisation of cis-acting elements of the human mitochondrial genome and for the study of human mitochondrial tRNA processing in organello.
Resumo:
An appreciation of the importance of interactions between microbes and multicellular organisms is currently driving research in biology and biomedicine. Many human diseases involve interactions between the host and the microbiota, so investigating the mechanisms involved is important for human health. Although microbial ecology measurements capture considerable diversity of the communities between individuals, this diversity is highly problematic for reproducible experimental animal models that seek to establish the mechanistic basis for interactions within the overall host-microbial superorganism. Conflicting experimental results may be explained away through unknown differences in the microbiota composition between vivaria or between the microenvironment of different isolated cages. In this position paper, we propose standardised criteria for stabilised and defined experimental animal microbiotas to generate reproducible models of human disease that are suitable for systematic experimentation and are reproducible across different institutions.
Resumo:
The efficacy and tolerance of a novel microbial 6-phytase were investigated in rainbow trout, Oncorhynchus mykiss, and Nile tilapia, Oreochromis niloticus. Reference diets were sufficient in available phosphorus (P). The test diet limiting in available P was supplemented with phytase at 500, 1000, or 2000 phytase units/kg feed. The enzyme was effective in increasing total P apparent digestibility coefficient in relation to increasing the dose of phytase in rainbow trout and Nile tilapia. Zinc apparent digestibility improved in relation to phytase supplementation in rainbow trout. P release due to phytase supplementation ranged from 0.06 to 0.18% P/kg feed in rainbow trout and from 0.13 to 0.26% P/kg feed in Nile tilapia. A 58-d performance trial was conducted to evaluate tolerance of fish to phytase supplementation. Dietary treatments consisted of a basal diet without phytase or supplemented with 2000 and 200,000 phytase units/kg feed. Results indicate that this novel microbial 6-phytase is well tolerated by fish. Significant improvements for growth as well as feed conversion ratio were observed when the phytase was fed at 2000 phytase units/kg feed. This phytase is proven efficient in releasing P from phytate and could be added when plants are used for fish meal replacement in diets for salmonid and omnivorous fish.