64 resultados para Metalloproteinase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES To assess a selection of host-derived biomarkers in peri-implant sulcus fluid (PISF) and gingival crevicular fluid (GCF) from adjacent teeth 10 years following implant placement. MATERIAL AND METHODS Peri-implant sulcus fluid and GCF samples obtained from the deepest sites of 504 implants and 493 adjacent teeth were analysed for levels of interleukin (IL)-1β, matrix metalloproteinase (MMP)-3, MMP-8, MMP-1, and MMP-1 bound to tissue inhibitor of MMP (TIMP)-1 (MMP-1/TIMP-1) by enzyme-linked immunosorbent assay (ELISA) technique. RESULTS Overall, MMP-8 was detected in 90% of the sites. In more than 50% of the sites, IL-1β was identified while in 30% of the sites MMP-1, MMP-1/TIMP-1 and MMP-3 were found over the detection level. Increased biomarkers levels from PISF and GCF were positively correlated (r = 0.375-0.702; P < 0.001). However, no qualitative and quantitative differences were found between PISF and GCF. The levels of MMP-1 were negatively correlated with those of MMP-1/TIMP-1 at implants (r = -0.644; P < 0.001). Median MMP-1 levels at implants were high (5.17 pg/site) in subjects with severe chronic periodontitis and low in patients with mild-to-moderate chronic periodontitis (0 pg/site; P = 0.026) or gingivitis (0 pg/site; P = 0.034). Levels of IL-1β were found to be different in GCF according to the periodontal conditions (P = 0.001) with the highest level found in mild-to-moderate periodontitis (6.2 pg/site). Clinical attachment levels at implants demonstrated an inverse correlation with MMP-1/TIMP-1 (r = -0.147; P = 0.001). CONCLUSIONS Increased levels of MMP-8 and IL-1β in PISF or GCF may be associated with inflammation around teeth and implants while lower levels of MMP-1/TIMP-1 may be an indicator of disease progression around implants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND The soluble factors secreted by mesenchymal stem cells are thought to either support or inhibit tumor growth. Herein, we investigated whether the human lung-derived mesenchymal stem cell-conditioned medium (hlMSC-CM) exerts antitumor activity in malignant pleural mesothelioma cell lines H28, H2052 and Meso4. METHODS hlMSC-CM was collected from the human lung-derived mesenchymal stem cells. Inhibition of tumor cell growth was based on the reduction of cell viability and inhibition of cell proliferation using the XTT and BrdU assays, respectively. Elimination of tumor spheroids was assessed by the anchorage-independent sphere formation assay. The cytokine profile of hlMSC-CM was determined by a chemiluminescence-based cytokine array. RESULTS Our data showed that hlMSC-CM contains a broad range of soluble factors which include: cytokines, chemokines, hormones, growth and angiogenic factors, matrix metalloproteinases, metalloproteinase inhibitors and cell-cell mediator proteins. The 48- and 72-hour hlMSC-CM treatments of H28, H2052 and Meso4 cell lines elicited significant decreases in cell viability and inhibited cell proliferation. The 72-hour hlMSC-CM incubation of H28 cells completely eliminated the drug-resistant sphere-forming cells, which is more potent than twice the half maximal inhibitory concentration of cisplatin. CONCLUSIONS Our findings indicate that the cell-free hlMSC-CM confers in vitro antitumor activities via soluble factors in the tested mesothelioma cells and, hence, may serve as a therapeutic tool to augment the current treatment strategies in malignant pleural mesothelioma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thirty-two poly(ε)caprolactone (PCL) scaffolds have been produced by electrospinning directly into an auricle-shaped mould and seeded with articular chondrocytes harvested from bovine ankle joints. After seeding, the auricle shaped constructs were cultured in vitro and analysed at days 1, 7, 14 and 21 for regional differences in total DNA, glycosaminoglycan (GAG) and collagen (COL) content as well as the expression of aggrecan (AGG), collagen type I and type II (COL1/2) and matrix metalloproteinase 3 and 13 (MMP3/13). Stress-relaxation indentation testing was performed to investigate regional mechanical properties of the electrospun constructs. Electrospinning into a conductive mould yielded stable 3D constructs both initially and for the whole in vitro culture period, with an equilibrium modulus in the MPa range. Rapid cell proliferation and COL accumulation was observed until week 3. Quantitative real time PCR analysis showed an initial increase in AGG, no change in COL2, a persistent increase in COL1, and only a slight decrease initially for MMP3. Electrospinning of fibrous scaffolds directly into an auricle-shape represents a promising option for auricular tissue engineering, as it can reduce the steps needed to achieve an implantable structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSC) represent a promising therapeutic approach in many diseases in view of their potent immunomodulatory properties, which are only partially understood. Here, we show that the endothelium is a specific and key target of MSC during immunity and inflammation. In mice, MSC inhibit activation and proliferation of endothelial cells in remote inflamed lymph nodes (LNs), affect elongation and arborization of high endothelial venules (HEVs) and inhibit T-cell homing. The proteomic analysis of the MSC secretome identified the tissue inhibitor of metalloproteinase-1 (TIMP-1) as a potential effector molecule responsible for the anti-angiogenic properties of MSC. Both in vitro and in vivo, TIMP-1 activity is responsible for the anti-angiogenic effects of MSC, and increasing TIMP-1 concentrations delivered by an Adeno Associated Virus (AAV) vector recapitulates the effects of MSC transplantation on draining LNs. Thus, this study discovers a new and highly efficient general mechanism through which MSC tune down immunity and inflammation, identifies TIMP-1 as a novel biomarker of MSC-based therapy and opens the gate to new therapeutic approaches of inflammatory diseases.