63 resultados para MS-based methods


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. The problem faced in this framework is that of Multiple Target Tracking (MTT). In this context both, the correct associations among the observations and the orbits of the objects have to be determined. The complexity of the MTT problem is defined by its dimension S. The number S corresponds to the number of fences involved in the problem. Each fence consists of a set of observations where each observation belongs to a different object. The S ≥ 3 MTT problem is an NP-hard combinatorial optimization problem. There are two general ways to solve this. One way is to seek the optimum solution, this can be achieved by applying a branch-and- bound algorithm. When using these algorithms the problem has to be greatly simplified to keep the computational cost at a reasonable level. Another option is to approximate the solution by using meta-heuristic methods. These methods aim to efficiently explore the different possible combinations so that a reasonable result can be obtained with a reasonable computational effort. To this end several population-based meta-heuristic methods are implemented and tested on simulated optical measurements. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the correlation and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Sensor-based recordings of human movements are becoming increasingly important for the assessment of motor symptoms in neurological disorders beyond rehabilitative purposes. ASSESS MS is a movement recording and analysis system being developed to automate the classification of motor dysfunction in patients with multiple sclerosis (MS) using depth-sensing computer vision. It aims to provide a more consistent and finer-grained measurement of motor dysfunction than currently possible. Objective: To test the usability and acceptability of ASSESS MS with health professionals and patients with MS. Methods: A prospective, mixed-methods study was carried out at 3 centers. After a 1-hour training session, a convenience sample of 12 health professionals (6 neurologists and 6 nurses) used ASSESS MS to capture recordings of standardized movements performed by 51 volunteer patients. Metrics for effectiveness, efficiency, and acceptability were defined and used to analyze data captured by ASSESS MS, video recordings of each examination, feedback questionnaires, and follow-up interviews. Results: All health professionals were able to complete recordings using ASSESS MS, achieving high levels of standardization on 3 of 4 metrics (movement performance, lateral positioning, and clear camera view but not distance positioning). Results were unaffected by patients’ level of physical or cognitive disability. ASSESS MS was perceived as easy to use by both patients and health professionals with high scores on the Likert-scale questions and positive interview commentary. ASSESS MS was highly acceptable to patients on all dimensions considered, including attitudes to future use, interaction (with health professionals), and overall perceptions of ASSESS MS. Health professionals also accepted ASSESS MS, but with greater ambivalence arising from the need to alter patient interaction styles. There was little variation in results across participating centers, and no differences between neurologists and nurses. Conclusions: In typical clinical settings, ASSESS MS is usable and acceptable to both patients and health professionals, generating data of a quality suitable for clinical analysis. An iterative design process appears to have been successful in accounting for factors that permit ASSESS MS to be used by a range of health professionals in new settings with minimal training. The study shows the potential of shifting ubiquitous sensing technologies from research into the clinic through a design approach that gives appropriate attention to the clinic environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose. The purpose of this study was to investigate statistical differences with MR perfusion imaging features that reflect the dynamics of Gadolinium-uptake in MS lesions using dynamic texture parameter analysis (DTPA). Methods. We investigated 51 MS lesions (25 enhancing, 26 nonenhancing lesions) of 12 patients. Enhancing lesions () were prestratified into enhancing lesions with increased permeability (EL+; ) and enhancing lesions with subtle permeability (EL−; ). Histogram-based feature maps were computed from the raw DSC-image time series and the corresponding texture parameters were analyzed during the inflow, outflow, and reperfusion time intervals. Results. Significant differences () were found between EL+ and EL− and between EL+ and nonenhancing inactive lesions (NEL). Main effects between EL+ versus EL− and EL+ versus NEL were observed during reperfusion (mainly in mean and standard deviation (SD): EL+ versus EL− and EL+ versus NEL), while EL− and NEL differed only in their SD during outflow. Conclusion. DTPA allows grading enhancing MS lesions according to their perfusion characteristics. Texture parameters of EL− were similar to NEL, while EL+ differed significantly from EL− and NEL. Dynamic texture analysis may thus be further investigated as noninvasive endogenous marker of lesion formation and restoration.