164 resultados para MISSENSE MUTATIONS
Resumo:
Microphthalmia in sheep is an autosomal recessive inherited congenital anomaly found within the Texel breed. It is characterized by extremely small or absent eyes and affected lambs are absolutely blind. For the first time, we use a genome-wide ovine SNP array for positional cloning of a Mendelian trait in sheep. Genotyping 23 cases and 23 controls using Illumina's OvineSNP50 BeadChip allowed us to localize the causative mutation for microphthalmia to a 2.4 Mb interval on sheep chromosome 22 by association and homozygosity mapping. The PITX3 gene is located within this interval and encodes a homeodomain-containing transcription factor involved in vertebrate lens formation. An abnormal development of the lens vesicle was shown to be the primary event in ovine microphthalmia. Therefore, we considered PITX3 a positional and functional candidate gene. An ovine BAC clone was sequenced, and after full-length cDNA cloning the PITX3 gene was annotated. Here we show that the ovine microphthalmia phenotype is perfectly associated with a missense mutation (c.338G>C, p.R113P) in the evolutionary conserved homeodomain of PITX3. Selection against this candidate causative mutation can now be used to eliminate microphthalmia from Texel sheep in production systems. Furthermore, the identification of a naturally occurring PITX3 mutation offers the opportunity to use the Texel as a genetically characterized large animal model for human microphthalmia.
Resumo:
The progress in molecular genetics in animal breeding is moderately effective as compared to traditional animal breeding using quantitative genetic approaches. There is an extensive disparity between the number of reported quantitative trait loci (QTLs) and their linked genetic variations in cattle, pig, and chicken. The identification of causative mutations affecting quantitative traits is still very challenging and hampered by the cloudy relationship between genotype and phenotype. There are relatively few reports in which a successful identification of a causative mutation for an animal production trait was demonstrated. The examples that have attracted considerable attention from the animal breeding community are briefly summarized and presented in a table. In this mini-review, the recent progress in mapping quantitative trait nucleotides (QTNs) are reviewed, including the ABCG2 gene mutation that underlies a QTL for fat and protein content and the ovine MSTN gene mutation that causes muscular hypertrophy in Texel sheep. It is concluded that the progress in molecular genetics might facilitate the elucidation of the genetic architecture of QTLs, so that also the high-hanging fruits can be harvested in order to contribute to efficient and sustainable animal production.
Resumo:
NPM1 mutations, the most frequent molecular alterations in acute myeloid leukemia (AML), have become important for risk stratification and treatment decisions for patients with normal karyotype AML. Rapid screening for NPM1 mutations should be available shortly after diagnosis. Several methods for detecting NPM1 mutations have been described, most of which are technically challenging and require additional laboratory equipment. We developed and validated an assay that allows specific, rapid, and simple screening for NPM1 mutations. FAST PCR spanning exons 8 to 12 of the NPM1 gene was performed on 284 diagnostic AML samples. PCR products were visualized on a 2 % agarose E-gel and verified by direct sequencing. The FAST PCR screening method showed a specificity and sensitivity of 100 %, i.e., all mutated cases were detected, and none of negative cases carried mutations. The limit of detection was at 5-10 % of mutant alleles. We conclude that the FAST PCR assay is a highly specific, rapid (less than 2 h), and sensitive screening method for the detection of NPM1 mutations. Moreover, this method is inexpensive and can easily be integrated in the routine molecular diagnostic work-up of established risk factors in AML using standard laboratory equipment.
Resumo:
Melanoma is characterized by a high frequency of BRAF mutations. It is unknown if the BRAF mutation status has any predictive value for therapeutic approaches such as angiogenesis inhibition.
Resumo:
Background Minor protease inhibitor (PI) mutations often exist as polymorphisms in HIV-1 sequences from treatment-naïve patients. Previous studies showed that their presence impairs the antiretroviral treatment (ART) response. Evaluating these findings in a larger cohort is essential. Methods To study the impact of minor PI mutations on time to viral suppression and time to virological failure, we included patients from the Swiss HIV Cohort Study infected with HIV-1 subtype B who started first-line ART with a PI and two nucleoside reverse transcriptase inhibitors. Cox regression models were performed to compare the outcomes among patients with 0 and ≥1 minor PI mutation. Models were adjusted for baseline HIV-1 RNA, CD4 cell count, sex, transmission category, age, ethnicity, year of ART start, the presence of nucleoside reverse transcriptase inhibitor mutations, and stratified for the administered PIs. Results We included 1199 patients of whom 944 (78.7%) received a boosted PI. Minor PI mutations associated with the administered PI were common: 41.7%, 16.1%, 4.7% and 1.9% had 1, 2, 3 or ≥4 mutations, respectively. The time to viral suppression was similar between patients with 0 (reference) and ≥1 minor PI mutation (multivariable hazard ratio (HR): 1.1 [95% confidence interval (CI): 1.0–1.3], P = .196). The time to virological failure was also similar (multivariable HR:.9 [95% CI:.5–1.6], P = .765). In addition, the impact of each single minor PI mutation was analyzed separately: none was significantly associated with the treatment outcome. Conclusions The presence of minor PI mutations at baseline has no effect on the therapy outcome in HIV infected individuals.
Resumo:
Sodium channel gene aberrations are associated with a wide range of seizure disorders, particularly Dravet syndrome. They usually consist of missense or truncating gene mutations or deletions. Duplications involving multiple genes encoding for different sodium channels are not widely known. This article summarizes the clinical, radiologic, and genetic features of patients with 2q24 duplication involving the sodium channel gene cluster.
Resumo:
Cytochrome P450 oxidoreductase (POR) is an enzyme that is essential for multiple metabolic processes, chiefly among them are reactions catalyzed by cytochrome P450 proteins for metabolism of steroid hormones, drugs and xenobiotics. Mutations in POR cause a complex set of disorders that often resemble defects in steroid metabolizing enzymes 17α-hydroxylase, 21-hydroxylase and aromatase. Since our initial reports of POR mutations in 2004, more than 200 different mutations and polymorphisms in POR gene have been identified. Several missense variations in POR have been tested for their effect on activities of multiple steroid and drug metabolizing P450 proteins. Mutations in POR may have variable effects on different P450 partner proteins depending on the location of the mutation. The POR mutations that disrupt the binding of co-factors have negative impact on all partner proteins, while mutations causing subtle structural changes may lead to altered interaction with specific partner proteins and the overall effect may be different for each partner. This review summarizes the recent discoveries related to mutations and polymorphisms in POR and discusses these mutations in the context of historical developments in the discovery and characterization of POR as an electron transfer protein. The review is focused on the structural, enzymatic and clinical implications of the mutations linked to newly identified disorders in humans, now categorized as POR deficiency.
Resumo:
Steroidogenic factor-1 (SF-1/NR5A1) is a nuclear receptor that regulates adrenal and reproductive development and function. NR5A1 mutations have been detected in 46,XY individuals with disorders of sexual development (DSD) but apparently normal adrenal function and in 46,XX women with normal sexual development yet primary ovarian insufficiency (POI).
Resumo:
The progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous disorders characterised by myoclonus, epilepsy, and neurological deterioration. This study aimed to identify the underlying gene(s) in childhood onset PME patients with unknown molecular genetic background.
Resumo:
Pontocerebellar hypoplasia with spinal muscular atrophy, also known as PCH1, is a group of autosomal recessive disorders characterized by generalized muscle weakness and global developmental delay commonly resulting in early death. Gene defects had been discovered only in single patients until the recent identification of EXOSC3 mutations in several families with relatively mild course of PCH1. We aim to genetically stratify subjects in a large and well-defined cohort to define the clinical spectrum and genotype-phenotype correlation.
Resumo:
Disaccharide intolerance I or congenital sucrase-isomaltase deficiency (CSID) is a disorder leading to maldigestion of disaccharides, which is autosomal recessively inherited. Here we analyzed the sucrase-isomaltase (SI) gene from 11 patients of Hungarian origin with congenital sucrase-isomaltase deficiency. Variants in the SI gene had previously been described in CSID patients, which cause amino acid exchanges that affect the transport, the processing, or the function of the SI protein. None of our patients had known mutations for CSID. Our analyses revealed 43 SI variants in total, 15 within exons and one at a splice site. Eight of the exonic mutations lead to amino acid exchanges, causing hypomorph or null alleles. One new variation affects a splice site, which is also predicted to result in a null allele. All potential pathological alterations were present on one allele only. In six out of the 11 patients the phenotype of CSID could be explained by compound heterozygosity.
Resumo:
OBJECTIVE: Brugada syndrome (BS) is an inherited electrical cardiac disorder characterized by right bundle branch block pattern and ST segment elevation in leads V1 to V3 on surface electrocardiogram that can potentially lead to malignant ventricular tachycardia and sudden cardiac death. About 20% of patients have mutations in the only so far identified gene, SCN5A, which encodes the alpha-subunit of the human cardiac voltage-dependent sodium channel (hNa(v)1.5). Fever has been shown to unmask or trigger the BS phenotype, but the associated molecular and the biophysical mechanisms are still poorly understood. We report on the identification and biophysical characterization of a novel heterozygous missense mutation in SCN5A, F1344S, in a 42-year-old male patient showing the BS phenotype leading to ventricular fibrillation during fever. METHODS: The mutation was reproduced in vitro using site-directed mutagenesis and characterized using the patch clamp technique in the whole-cell configuration. RESULTS: The biophysical characterization of the channels carrying the F1344S mutation revealed a 10 mV mid-point shift of the G/V curve toward more positive voltages during activation. Raising the temperature to 40.5 degrees C further shifted the mid-point activation by 18 mV and significantly changed the slope factor in Na(v)1.5/F1344S mutant channels from -6.49 to -10.27 mV. CONCLUSIONS: Our findings indicate for the first time that the shift in activation and change in the slope factor at a higher temperature mimicking fever could reduce sodium currents' amplitude and trigger the manifestation of the BS phenotype.