86 resultados para MEDIAL AMYGDALOID NUCLEUS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since we do not know what future holds for us, we prepare for expected emotional events in order to deal with a pleasant or threatening environment. From an evolutionary perspective, it makes sense to be particularly prepared for the worst-case scenario. We were interested to evaluate whether this assumption is reflected in the central nervous information processing associated with expecting visual stimuli of unknown emotional valence. While being scanned with functional magnetic resonance imaging, healthy subjects were cued to expect and then perceive visual stimuli with a known emotional valence as pleasant, unpleasant, and neutral, as well as stimuli of unknown valence that could have been either pleasant or unpleasant. While anticipating pictures of unknown valence, the activity of emotion processing brain areas was similar to activity associated with expecting unpleasant pictures, but there were no areas in which the activity was similar to the activity when expecting pleasant pictures. The activity of the revealed regions, including bilateral insula, right inferior frontal gyrus, medial thalamus, and red nucleus, further correlated with the individual ratings of mood: the worse the mood, the higher the activity. These areas are supposedly involved in a network for internal adaptation and preparation processes in order to act according to potential or certain unpleasant events. Their activity appears to reflect a 'pessimistic' bias by anticipating the events of unknown valence to be unpleasant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectrum of electrons from muons decaying in an atomic bound state is significantly modified by their interaction with the nucleus. Somewhat unexpectedly, its first measurement, at the Canadian laboratory TRIUMF, differed from basic theory. We show, using a combination of techniques developed in atomic, nuclear, and high-energy physics, that radiative corrections eliminate the discrepancy. In addition to solving that outstanding problem, our more precise predictions are potentially useful for interpreting future high-statistics muon experiments that aim to search for exotic interactions at 10−16 sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Notochordal cells (NC) are shifted back into focus due to their apparent action of activating other disc cells via indirect release of yet unknown factors into the medium (conditioned medium = CM).1,2 Recent evidence confirms the results from the late 1990s.3,4 Here, we test porcine (p) NC cultured in 3D and the influence of adding serum or using serum-free medium onto the culture on NC cells and its stimulating effects for subsequent coculture with primary bovine (b) nucleus pulposus (bNPC) and annulus fibrous cells (bAFC). Materials and Methods Primary pNC, bNPC, and bAFC were isolated from porcine tails (< 6-12 months age) or bovine tails (∼1 year age), which were obtained from the food chain (N = 4 repeats) within 4 hours postmortem. All cells were seeded into 1.2% alginate, each with a density of 4 × 106/mL. NC were then either cultured for 7 days in serum free medium (SFM = Dulbecco modified eagle medium [DMEM] supplied with ITS+, 50 µg/mL vitamin C and nonessential amino acids) or DMEM + 10% fetal calf serum (FCS). CM was produced from NC collecting 4 mL SFM and keeping approximately 30 beads for 7 days. Then, a coculture was set up in SFM for 14 days using indirect cell-cell contact (culture insert, high density pore, 0.4 µm) using a 50:50% ratio5 of pNC:bNP or bAF, or by addition of CM, respectively. The cell activity, glycosaminoglycan per DNA (GAG/DNA) ratio, and real-time RT-PCR of IVD relevant genes were monitored. Mass spectrometry was performed on the SFM and the cocultured medium as well as the CM of the pNC to identify possible key cytokines to the stimulatory effects. Results The results for cell activity confirmed that pNC are highly responsive on the nutritional condition in the culture (K-W test, p = 0.048) after 7 days of coculture. bNPC and bAFC did not respond significantly different to coculture or addition of CM with respect to cell activity. However, GAG/DNA ratio of pNC was significantly upregulated if they were initially pre-exposed to FCS and in coculture with bNPC after 14 days, for both normoxia and hypoxia (K-W, p = 0.03). The bNPC were stimulated by both, 1:1 coculture with pNC but also by addition of CM only, which resulted in approximately 200% increased GAG/DNA values relative to the day 0 state. However, this doubling of the GAG/DNA ratio was nonsignificant after 14 days. The aggrecan/collagen type 2 ratio as quantified from real-time RT-PCR pointed to a beneficial state of the bNPC if cultured either in indirect coculture with pNC or by the addition of CM (Fig. 1). The mass spectrometric analysis of the CM revealed that there was connecting tissue growth factor present (CTGF) among the cytokine CLC11, a cytokine that has been found to be expressed in skeletal tissues including bone marrow and chondrocytes among other factors that might have immunoregulatory and cell proliferative functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Medial open wedge high tibial osteotomy is a well-established procedure for the treatment of unicompartmental osteoarthritis and symptomatic varus malalignment. We hypothesized that different fixation devices generate different fixation stability profiles for the various wedge sizes in a finite element (FE) analysis. METHODS Four types of fixation were compared: 1) first and 2) second generation Puddu plates, and 3) TomoFix plate with and 4) without bone graft. Cortical and cancellous bone was modelled and five different opening wedge sizes were studied for each model. Outcome measures included: 1) stresses in bone, 2) relative displacement of the proximal and distal tibial fragments, 3) stresses in the plates, 4) stresses on the upper and lower screw surfaces in the screw channels. RESULTS The highest load for all fixation types occurred in the plate axis. For the vast majority of the wedge sizes and fixation types the shear stress (von Mises stress) was dominating in the bone independent of fixation type. The relative displacements of the tibial fragments were low (in μm range). With an increasing wedge size this displacement tended to increase for both Puddu plates and the TomoFix plate with bone graft. For the TomoFix plate without bone graft a rather opposite trend was observed.For all fixation types the occurring stresses at the screw-bone contact areas pulled at the screws and exceeded the allowable threshold of 1.2 MPa for at least one screw surface. Of the six screw surfaces that were studied, the TomoFix plate with bone graft showed a stress excess of one out of twelve and without bone graft, five out of twelve. With the Puddu plates, an excess stress occurred in the majority of screw surfaces. CONCLUSIONS The different fixation devices generate different fixation stability profiles for different opening wedge sizes. Based on the computational simulations, none of the studied osteosynthesis fixation types warranted an intransigent full weight bearing per se. The highest fixation stability was observed for the TomoFix plates and the lowest for the first generation Puddu plate. These findings were revealed in theoretical models and need to be validated in controlled clinical settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In personal and in society related context, people often evaluate the risk of environmental and technological hazards. Previous research addressing neuroscience of risk evaluation assessed particularly the direct personal risk of presented stimuli, which may have comprised for instance aspects of fear. Further, risk evaluation primarily was compared to tasks of other cognitive domains serving as control conditions, thus revealing general risk related brain activity, but not such specifically associated with estimating a higher level of risk. We here investigated the neural basis on which lay-persons individually evaluated the risk of different potential hazards for the society. Twenty healthy subjects underwent functional magnetic resonance imaging while evaluating the risk of fifty more or less risky conditions presented as written terms. Brain activations during the individual estimations of 'high' against 'low' risk, and of negative versus neutral and positive emotional valences were analyzed. Estimating hazards to be of high risk was associated with activation in medial thalamus, anterior insula, caudate nucleus, cingulate cortex and further prefrontal and temporo-occipital areas. These areas were not involved according to an analysis of the emotion ratings. In conclusion, we emphasize a contribution of the mentioned brain areas involved to signal high risk, here not primarily associated with the emotional valence of the risk items. These areas have earlier been reported to be associated with, beside emotional, viscerosensitive and implicit processing. This leads to assumptions of an intuitive contribution, or a "gut-feeling", not necessarily dependent of the subjective emotional valence, when estimating a high risk of environmental hazards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thyroid transcription factor 1 (TTF-1) is encoded by the NKX2-1 homeobox gene. Besides specifying thyroid and pulmonary organogenesis, it is also temporarily expressed during embryonic development of the ventral forebrain. We recently observed widespread immunoreactivity for TTF-1 in a case of subependymal giant cell astrocytoma (SEGA, WHO grade I) – a defining lesion of the tuberous sclerosis complex (TSC). This prompted us to investigate additional SEGAs in this regard. We found tumor cells in all 7 specimens analyzed to be TTF-1 positive. In contrast, we did not find TTF-1 immunoreactivity in a cortical tuber or two renal angiomyolipomas resected from TSC patients. We propose our finding of consistent TTF-1 expression in SEGAs to indicate lineage-committed derivation of these tumors from a regionally specified cell of origin. The medial ganglionic eminence, ventral septal region, and preoptic area of the developing brain may represent candidates for the origin of SEGAs. Such lineagerestricted histogenesis may also explain the stereotypic distribution of SEGAs along the caudate nucleus in the lateral ventricles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prior research has shown that mothers with Interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) report greater difficulty in parenting their toddlers. Relative to their frequent early exposure to violence and maltreatment, these mothers display dysregulation of their hypothalamic pituitary adrenal axis (HPA-axis), characterized by hypocortisolism. Considering methylation of the promoter region of the glucocorticoid receptor gene NR3C1 as a marker for HPA-axis functioning, with less methylation likely being associated with less circulating cortisol, the present study tested the hypothesis that the degree of methylation of this gene would be negatively correlated with maternal IPV-PTSD severity and parenting stress, and positively correlated with medial prefrontal cortical (mPFC) activity in response to video-stimuli of stressful versus non-stressful mother-child interactions. Following a mental health assessment, 45 mothers and their children (ages 12-42 months) participated in a behavioral protocol involving free-play and laboratory stressors such as mother-child separation. Maternal DNA was extracted from saliva. Interactive behavior was rated on the CARE-Index. During subsequent fMRI scanning, mothers were shown films of free-play and separation drawn from this protocol. Maternal PTSD severity and parenting stress were negatively correlated with the mean percentage of methylation of NR3C1. Maternal mPFC activity in response to video-stimuli of mother-child separation versus play correlated positively to NR3C1 methylation, and negatively to maternal IPV-PTSD and parenting stress. Among interactive behavior variables, child cooperativeness in play was positively correlated with NR3C1 methylation. Thus, the present study is the first published report to our knowledge, suggesting convergence of behavioral, epigenetic, and neuroimaging data that form a psychobiological signature of parenting-risk in the context of early life stress and PTSD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discectomy and spinal fusion is the gold standard for spinal surgery to relieve pain. However, fusion can be hindered for yet unknown reasons that lead to non-fusions with pseudo-arthrosis. Clinical observations indicate that presence of residual intervertebral disc (IVD) tissue might hinder the ossification. We hypothesize that BMP-antagonists are constantly secreted by IVD cells and potentially prevent the ossification process. Furthermore, L51P, the engineered BMP2 variant, stimulates osseo-induction of bone marrow-derived mesenchymal stem cells (MSC) by antagonizing BMP-inhibitors. Human MSCs, primary nucleus pulposus (NPC) and annulus pulposus cells (AFC) were isolated and expanded in monolayer cultures up to passage 3. IVD cells were seeded in 1.2% alginate beads (4Mio/mL) and separated by culture inserts from MSCs. MSCs were kept in 1:control medium, 2:osteogenic medium±alginate beads, 3:osteogenic medium+NPC (±L51P) and 4:osteogenic medium+AFC (±L51P) for 21 days. Relative gene expression of bone-related genes, alkaline phosphatase assay and histological staining were performed. Osteogenesis of MSCs was hindered as shown by reduced alizarin red staining in the presence of NPC. No such inhibition was observed if co-cultured with alginate only or in the presence of AFC. The results were confirmed on the RNA and protein level. Addition of L51Pto the co- cultures, however, induced mineralization of MSCs in presence of NPC. We demonstrated that NPC secrete BMP-antagonists that prevent osteogenesis of MSCs and L51P can antagonize BMP-antagonists and induce bone formation.