165 resultados para Loading constraints
Resumo:
PURPOSE: The aim of the present clinical trial was to evaluate the 12-month success rate of titanium dental implants placed in the posterior mandible and immediately loaded with 3-unit fixed partial dentures. MATERIALS AND METHODS: Patients with missing mandibular premolars and molars were enrolled in this study. To be included in the study, the implants had to show good primary stability. Implant stability was measured with resonance frequency analysis using the Osstell device (Integration Diagnostics). Implants were included in the study when the stability quotient (ISQ) exceeded 62. Clinical measurements, such as width of keratinized tissue, ISQ, and radiographic assessment of peri-implant bone crest levels, were performed at baseline and at the 12-month follow-up. The comparison between the baseline and the 12-month visits was performed with the Student t test for paired data (statistically significant at a level of alpha = 0.05). RESULTS: Forty implants with a sandblasted, large grit, acid-etched (SLA) surface (Straumann) were placed in 20 patients. At 12 months, only 1 implant had been lost because of an acute infection. The remaining 39 implants were successful, resulting in a 1-year success rate of 97.5%. Neither peri-implant bone levels, measured radiographically, nor implant stability changed significantly from baseline to the 12-month follow-up (P > .05). DISCUSSION: The immediate functional loading of implants placed in this case series study resulted in a satisfactory success rate. CONCLUSION: The findings from this clinical study showed that the placement of SLA transmucosal implants in the mandibular area and their immediate loading with 3-unit fixed partial dentures may be a safe and successful procedure.
Resumo:
Studies of subcellular Ca(2+) signaling rely on methods for labeling cells with fluorescent Ca(2+) indicator dyes. In this study, we demonstrate the use of single-cell electroporation for Ca(2+) indicator loading of individual neurons and small neuronal networks in rat neocortex in vitro and in vivo. Brief voltage pulses were delivered through glass pipettes positioned close to target cells. This approach resulted in reliable and rapid (within seconds) loading of somata and subsequent complete labeling of dendritic and axonal arborizations. By using simultaneous whole-cell recordings in brain slices, we directly addressed the effect of electroporation on neurons. Cell viability was high (about 85%) with recovery from the membrane permeabilization occurring within a minute. Electrical properties of recovered cells were indistinguishable before and after electroporation. In addition, Ca(2+) transients with normal appearance could be evoked in dendrites, spines, and axonal boutons of electroporated cells. Using negative-stains of somata, targeted single-cell electroporation was equally applicable in vivo. We conclude that electroporation is a simple approach that permits Ca(2+) indicator loading of multiple cells with low background staining within a short amount of time, which makes it especially well suited for functional imaging of subcellular Ca(2+) dynamics in small neuronal networks.
Resumo:
OBJECTIVES: To evaluate whether or not preparation of the implant site with osteotomes instead of drilling may improve peri-implant bone density and/or osseointegration, and whether or not this further improves the predictability of immediate loading of SLA implants. MATERIAL AND METHODS: The second, third, and fourth premolars were extracted in both sides of the mandible in six dogs, and after at least 3 months four SLA implants were inserted into each side of the jaw. In three animals, the implant sites were prepared by means of osteotomes, while standard stepwise drilling was used in the remaining animals. In each side of the jaw, two non-adjacent implants were restored with single crowns 4 days after installation, while the remaining two implants were left without crowns to serve as non-loaded controls. After 2, 4, or 12 weeks of loading, specimens including the implants and surrounding tissues were obtained and processed for histologic analysis of undecalcified sections. RESULTS: All implants placed with osteotomes were lost (five before delivery of the crowns and the rest during the first week after loading). None of the conventionally inserted implants, however, was lost, and histomorphometrical analysis revealed similar soft- and hard peri-implant tissue characteristics at immediately loaded and non-loaded implants at all observation times. Average bone-to-implant contact was 59-72% at immediately loaded implants vs. 60-63% at non-loaded ones. CONCLUSION: Preparation of the implant site by means of osteotomes had a deleterious effect on osseointegration, while immediate loading of single, free-standing, SLA implants following a conventional surgical protocol did not jeopardize their osseointegration.
Resumo:
INTRODUCTION: In highly emetogenic chemotherapy, the recommended dose of the serotonin-receptor antagonist ondansetron (5 mg/m(2) q8h) may be insufficient to prevent chemotherapy-induced nausea and vomiting. In adults, ondansetron-loading doses (OLD) of 32 mg are safe. We aimed to evaluate in children the safety of an OLD of 16 mg/m(2) (top, 24 mg) i.v., followed by two doses of 5 mg/m(2) q8h. MATERIALS AND METHODS: This retrospective single-center study included all pediatric oncology patients having received >/=1 OLD between 2002 and 2005. Adverse events (AE) definitely, probably, or possibly related to OLD were studied, excluding AE not or unlikely related to the OLD. Associations between potential predictors and at least moderate AE were analyzed by mixed logistic regression. RESULTS: Of 167 patients treated with chemotherapy, 37 (22%) received 543 OLD. The most common AE were hypotension, fatigue, injection site reaction, headache, hot flashes/flushes, and dizziness. At least mild AE were described in 139 OLD (26%), at least moderate AE in 23 (4.2%), and severe AE in 5 (0.9%; exact 95% confidence interval [CI], 0.4-2.1). Life-threatening or lethal AE were not observed (0.0%; 0.0-0.6). At least moderate AE were significantly more frequent in female patients (odds ratio [OR] 3.5; 95% CI 1.4-8.8; p = 0.010), after erroneously given second OLD (17.0; 1.9-154; p = 0.012) and higher 24 h cumulative surface corrected dose (1.26 per mg/m(2); 1.06-1.51; p = 0.009). OLD given to infants below 2 years were not associated with more frequent AE. CONCLUSIONS: Ondansetron-loading doses of 16 mg/m(2) (top, 24 mg) i.v. seem to be safe in infants, children, and adolescents.
Resumo:
Gas is trapped in polar ice sheets at ~50–120 m below the surface and is therefore younger than the surrounding ice. Firn densification models are used to evaluate this ice age-gas age difference (Δage) in the past. However, such models need to be validated by data, in particular for periods colder than present day on the East Antarctic plateau. Here we bring new constraints to test a firn densification model applied to the EPICA Dome C (EDC) site for the last 50 kyr, by linking the EDC ice core to the EPICA Dronning Maud Land (EDML) ice core, both in the ice phase (using volcanic horizons) and in the gas phase (using rapid methane variations). We also use the structured 10Be peak, occurring 41 kyr before present (BP) and due to the low geomagnetic field associated with the Laschamp event, to experimentally estimate the Δage during this event. Our results seem to reveal an overestimate of the Δage by the firn densification model during the last glacial period at EDC. Tests with different accumulation rates and temperature scenarios do not entirely resolve this discrepancy. Although the exact reasons for the Δage overestimate at the two EPICA sites remain unknown at this stage, we conclude that current densification model simulations have deficits under glacial climatic conditions. Whatever the cause of the Δage overestimate, our finding suggests that the phase relationship between CO2 and EDC temperature previously inferred for the start of the last deglaciation (lag of CO2 by 800±600 yr) seems to be overestimated.
Sedimentological and palynological constraints on the basal Triassic sequence in Central Switzerland
Resumo:
Petrography, geochemical whole-rock composition, and chemical analyses of tourmaline were performed in order to determine the source areas of Lower Cretaceous Mora, El Castellar, and uppermost Camarillas Formation sandstones from the Iberian Chain, Spain. Sandstones were deposited in intraplate subbasins, which are bound by plutonic and volcanic rocks of Permian, Triassic, and Jurassic age, Paleozoic metamorphic rocks, and Triassic sedimentary rocks. Modal analyses together with petrographic and cathodoluminescence observations allowed us to define three quartz-feldspathic petrofacies and recognize diagenetic processes that modified the original framework composition. Results from average restored petrofacies are: Mora petrofacies = P/F >1 and Q(r)70 F(r)22 R(r)9; El Castellar petrofacies = P/F >1 and Q(r)57 F(r)25 R(r)18; and Camarillas petrofacies = P/F ∼ zero and Q(r)64 F(r)28 R(r)7 (P—plagioclase; F—feldspar; Q—quartz; R—rock fragments; r—restored composition). Trace-element and rare earth element abundances of whole-rock analyses discriminate well between the three petrofacies based on: (1) the Rb concentration, which is indicative of the K content and reflects the amount of K-feldspar modal abundance, and (2) the relative modal abundance of heavy minerals (tourmaline, zircon, titanite, and apatite), which is reproduced by the elements hosted in the observed heavy mineral assemblage (i.e., B and Li for tourmaline; Zr, Hf, and Ta for zircon; Ti, Ta, Nb, and their rare earth elements for titanite; and P, Y, and their rare earth elements for apatite). Tourmaline chemical composition for the three petrofacies ranges from Fe-tourmaline of granitic to Mg-tourmaline of metamorphic origin. The three defined petrofacies suggest a mixed provenance from plutonic and metamorphic source rocks. However, a progressively major influence of granitic source rocks was detected from the lowermost Mora petrofacies toward the uppermost Camarillas petrofacies. This provenance trend is consistent with the uplift and erosion of the Iberian Massif, which coincided with the development of the latest Berriasian synrift regional unconformity and affected all of the Iberian intraplate basins. The uplifting stage of Iberian Massif pluton caused a significant dilution of Paleozoic metamorphic source areas, which were dominant during the sedimentation of the lowermost Mora and El Castellar petrofacies. The association of petrographic data with whole-rock geochemical compositions and tourmaline chemical analysis has proved to be useful for determining source area characteristics, their predominance, and the evolution of source rock types during the deposition of quartz-feldspathic sandstones in intraplate basins. This approach ensures that provenance interpretation is consistent with the geological context.