81 resultados para Loading constraint
Resumo:
In modern medico-legal literature, only a small number of publications deal with fatal injuries from black powder guns. Most of them focus on the morphological features such as intense soot soiling, blast tattooing and burn effects in close-range shots or describe the wound ballistics of spherical lead bullets. Another kind of "unusual" and potentially lethal weapons are handguns destined for firing only blank cartridges such as starter and alarm pistols. The dangerousness of these guns is restricted to very close and contact range shots and results from the gas jet produced by the deflagration of the propellant. The present paper reports on a suicide committed with a muzzle-loading percussion pistol cal. 45. An unusually large stellate entrance wound was located in the precordial region, accompanied by an imprint mark from the ramrod and a faint greenish discoloration (apparently due to the formation of sulfhemoglobin). Autopsy revealed an oversized powder cavity, multiple fractures of the anterior thoracic wall as well as ruptures of the heart, the aorta, the left hepatic lobe and the diaphragm. In total, the zone of mechanical destruction had a diameter of approx. 15 cm. As there was no exit wound and no bullet lodged in the body, the injury was caused exclusively by the inrushing combustion gases of the propellant (black powder) comparable with the gas jet of a blank cartridge gun. In contact shots to ballistic gelatine using the suicide's pistol loaded with black powder but no projectile, the formation of a nearly spherical cavity could be demonstrated by means of a high-speed camera. The extent of the temporary cavity after firing with 5 g of black powder roughly corresponded to the zone of destruction found in the suicide's body.
Resumo:
Introduction Previous studies on the influence of torsion and combined torsion-compression loading revealed a positive effect on the cell viability when a repetitive short-term torsion was applied at a physiological magnitude to intervertebral disc organ culture.1 However, after an extended period (8 hours) of combined torsion-compression loading, substantial cell death was detected in the nucleus pulposus (NP).2 In this follow-up study, we aimed to investigate the relationship, if any, between the duration of torsion applied to the intervertebral disc (IVD) and the level of NP cell viability. Materials and Methods Bovine caudal discs were harvested and cultured in a custom-built multiaxis dynamic loading bioreactor.2 Torsion (± 2 degrees) was applied to the samples at a frequency of 0.2 Hz. Torsion was applied for durations of 0, 1, 4, and 8 h/d, repeated over 7 days. After the last day of loading, disc tissue was dissected for analysis of cell viability and gene expression. Results Disc NP cell viability remained above 85% after torsional loading for 0, 1, or 4 h/d. Viability was statistical significantly reduced to below 70% when torsion was applied for 8 h/d (p = 0.03) (Table 1). The daily duration of torsional loading did not affect the AF cell viability (> 80% for all loading durations). The trend of collagen 2 gene upregulation and matrix metalloproteases 13 downregulation with an increasing duration of torsion was observed in both NP and AF (Fig. 1).Conclusion We have demonstrated that an extended duration of torsion could inhibit the survival of NP cells within the IVD in organ culture. Acknowledgments Funds from the Orthopedic Department of the Insel University Hospital of Bern and a private donation from Prof. Dr. Paul Heini, Spine Surgeon, Sonnenhof Clinic Bern were received to support this work. Disclosure of Interest None declared References References 1 Chan SC, Ferguson SJ, Wuertz K, Gantenbein-Ritter B. Biological response of the intervertebral disc to repetitive short-term cyclic torsion. Spine 2011;36(24):2021–2030 2 Chan SC, Walser J, Käppeli P, Shamsollahi MJ, Ferguson SJ, Gantenbein-Ritter B. Region specific response of intervertebral disc cells to complex dynamic loading: an organ culture study using a dynamic torsion-compression bioreactor. PLoS ONE 2013;8(8):e72489
Resumo:
The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL) cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS) of low (CTSL) and high (CTSH) magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2) and prostaglandin E2 (PGE2) was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P < 0.05) increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis.
Resumo:
Hydrogels have been described as ideal scaffolds for cells of 3D tissue constructs and hold strong promises with respect to in vitro 3D-cell-culture, where cells are isolated from native extracellular matrix (ECM). Synthesized polyethyleneglycol (PEG) hydrogels are appealing with regard to potential for cell therapy or as vehicles for drug delivery or even to regenerate tissue with similar hydrogel-like properties such as the nucleus pulposus of the intervertebral disc (IVD). Here, we tested whether incorporation of RGD motive would hinder discogenic differentiation of primary bone marrow-derived human mesenchymal stem cells (hMSCs) but favor proliferation of undifferentiated hMSCs. HMSCs were embedded in +RGD containing or without RGD PEG hydrogel and pre-conditioned with or without growth and differentiation factor-5 (rhGDF-5) for 13 days. Afterwards, all hMSCs-PEG gels were subsequently cyclically loaded (15% strain, 1Hz) for 5 consecutive days in a bioreactor to generate an IVD-like phenotype. Higher metabolic activity (resazurin assay) was found in groups with rhGDF5 in both gel types with and without RGD. Cell viability and morphology measured by confocal laser microscopy and DNA content showed decreased values (~60%) after 18 days of culture. Real-time RT-PCR of an array of 15 key genes suspected to be distinctive for IVD cells revealed moderate response to rhGDF5 and mechanical loading as also shown by histology staining. Preconditioning and mechanical loading showed relatively moderate responses revealed from both RT-PCR and histology although hMSCs were demonstrated to be potent to differentiate into chondrocyte-progenitor cells in micro- mass and 3D alginate bead culture.
Resumo:
In this paper, we propose a new method for stitching multiple fluoroscopic images taken by a C-arm instrument. We employ an X-ray radiolucent ruler with numbered graduations while acquiring the images, and the image stitching is based on detecting and matching ruler parts in the images to the corresponding parts of a virtual ruler. To achieve this goal, we first detect the regular spaced graduations on the ruler and the numbers. After graduation labeling, for each image, we have the location and the associated number for every graduation on the ruler. Then, we initialize the panoramic X-ray image with the virtual ruler, and we “paste” each image by aligning the detected ruler part on the original image, to the corresponding part of the virtual ruler on the panoramic image. Our method is based on ruler matching but without the requirement of matching similar feature points in pairwise images, and thus, we do not necessarily require overlap between the images. We tested our method on eight different datasets of X-ray images, including long bones and a complete spine. Qualitative and quantitative experiments show that our method achieves good results.
Resumo:
PURPOSE To assess intra- and subretinal fluid during the loading phase with intravitreal ranibizumab in exudative age-related macular degeneration and to quantify the accuracy of crosshair scan spectral-domain optical coherence tomography with regard to retinal fluid. METHODS This is a retrospective study of 31 treatment-naive patients who received 3 monthly intravitreal ranibizumab injections. Visual acuity and the presence of retinal fluid were assessed at each visit using volume and crosshair scan protocols. RESULTS Visual acuity improved and central retinal thickness decreased significantly during the loading phase. However, retinal fluid persisted in two thirds of the patients. The accuracy of the crosshair scan to detect fluid was 93%. CONCLUSIONS A substantial proportion of eyes had persistent fluid after 3 months of ranibizumab injections. However, visual improvement was independent of residual fluid. Message: Crosshair scans detect relevant collections of retinal fluid accurately and may be sufficient in daily clinical practice. © 2015 S. Karger AG, Basel.
Resumo:
OBJECTIVES The aim of this study was to assess the safety of the concurrent administration of a clopidogrel and prasugrel loading dose in patients undergoing primary percutaneous coronary intervention. BACKGROUND Prasugrel is one of the preferred P2Y12 platelet receptor antagonists for ST-segment elevation myocardial infarction patients. The use of prasugrel was evaluated clinically in clopidogrel-naive patients. METHODS Between September 2009 and October 2012, a total of 2,023 STEMI patients were enrolled in the COMFORTABLE (Comparison of Biomatrix Versus Gazelle in ST-Elevation Myocardial Infarction [STEMI]) and the SPUM-ACS (Inflammation and Acute Coronary Syndromes) studies. Patients receiving a prasugrel loading dose were divided into 2 groups: 1) clopidogrel and a subsequent prasugrel loading dose; and 2) a prasugrel loading dose. The primary safety endpoint was Bleeding Academic Research Consortium types 3 to 5 bleeding in hospital at 30 days. RESULTS Of 2,023 patients undergoing primary percutaneous coronary intervention, 427 (21.1%) received clopidogrel and a subsequent prasugrel loading dose, 447 (22.1%) received a prasugrel loading dose alone, and the remaining received clopidogrel only. At 30 days, the primary safety endpoint was observed in 1.9% of those receiving clopidogrel and a subsequent prasugrel loading dose and 3.4% of those receiving a prasugrel loading dose alone (adjusted hazard ratio [HR]: 0.57; 95% confidence interval [CI]: 0.25 to 1.30, p = 0.18). The HAS-BLED (hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition, labile international normalized ratio, elderly, drugs/alcohol concomitantly) bleeding score tended to be higher in prasugrel-treated patients (p = 0.076). The primary safety endpoint results, however, remained unchanged after adjustment for these differences (clopidogrel and a subsequent prasugrel loading dose vs. prasugrel only; HR: 0.54 [95% CI: 0.23 to 1.27], p = 0.16). No differences in the composite of cardiac death, myocardial infarction, or stroke were observed at 30 days (adjusted HR: 0.66, 95% CI: 0.27 to 1.62, p = 0.36). CONCLUSIONS This observational, nonrandomized study of ST-segment elevation myocardial infarction patients suggests that the administration of a loading dose of prasugrel in patients pre-treated with a loading dose of clopidogrel is not associated with an excess of major bleeding events. (Comparison of Biomatrix Versus Gazelle in ST-Elevation Myocardial Infarction [STEMI] [COMFORTABLE]; NCT00962416; and Inflammation and Acute Coronary Syndromes [SPUM-ACS]; NCT01000701).