67 resultados para Light and electron microscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polyneuropathy of juvenile Greyhound show dogs shows clinical similarities to the genetically heterogeneous Charcot-Marie-Tooth (CMT) disease in humans. The pedigrees containing affected dogs suggest monogenic autosomal recessive inheritance and all affected dogs trace back to a single male. Here, we studied the neuropathology of this disease and identified a candidate causative mutation. Peripheral nerve biopsies from affected dogs were examined using semi-thin histology, nerve fibre teasing and electron microscopy. A severe chronic progressive mixed polyneuropathy was observed. Seven affected and 17 related control dogs were genotyped on the 50k canine SNP chip. This allowed us to localize the causative mutation to a 19.5 Mb interval on chromosome 13 by homozygosity mapping. The NDRG1 gene is located within this interval and NDRG1 mutations have been shown to cause hereditary motor and sensory neuropathy-Lom in humans (CMT4D). Therefore, we considered NDRG1 a positional and functional candidate gene and performed mutation analysis in affected and control Greyhounds. A 10 bp deletion in canine NDRG1 exon 15 (c.1080_1089delTCGCCTGGAC) was perfectly associated with the polyneuropathy phenotype of Greyhound show dogs. The deletion causes a frame shift (p.Arg361SerfsX60) which alters several amino acids before a stop codon is encountered. A reduced level of NDRG1 transcript could be detected by RT-PCR. Western blot analysis demonstrated an absence of NDRG1 protein in peripheral nerve biopsy of an affected Greyhound. We thus have identified a candidate causative mutation for polyneuropathy in Greyhounds and identified the first genetically characterized canine CMT model which offers an opportunity to gain further insights into the pathobiology and therapy of human NDRG1 associated CMT disease. Selection against this mutation can now be used to eliminate polyneuropathy from Greyhound show dogs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatocyte growth factor (HGF) is involved in development and regeneration of the lungs. Human HGF, which was expressed specifically by alveolar epithelial type II cells after gene transfer, attenuated the bleomycin-induced pulmonary fibrosis in an animal model. As there are also regions that appear morphologically unaffected in fibrosis, the effects of this gene transfer to normal lungs is of interest. In vitro studies showed that HGF inhibits the formation of the basal lamina by cultured alveolar epithelial cells. Thus we hypothesized that, in the healthy lung, cell-specific expression of HGF induces a remodeling within septal walls. Electroporation of a plasmid of human HGF gene controlled by the surfactant protein C promoter was applied for targeted gene transfer. Using design-based stereology at light and electron microscopic level, structural alterations were analyzed and compared with a control group. HGF gene transfer increased the volume of distal air spaces, as well as the surface area of the alveolar epithelium. The volume of septal walls, as well as the number of alveoli, was unchanged. Volumes per lung of collagen and elastic fibers were unaltered, but a marked reduction of the volume of residual extracellular matrix (all components other than collagen and elastic fibers) and interstitial cells was found. A correlation between the volumes of residual extracellular matrix and distal air spaces, as well as total surface area of alveolar epithelium, could be established. Cell-specific expression of HGF leads to a remodeling of the connective tissue within the septal walls in the healthy lung, which is associated with more pronounced stretching of distal air spaces at a given hydrostatic pressure during instillation fixation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute lung injury is associated with a variety of histopathological alterations, such as oedema formation, damage to the components of the blood–air barrier and impairment of the surfactant system. Stereological methods are indispensable tools with which to properly quantitate these structural alterations at the light and electron microscopic level. The stereological parameters that are relevant for the analysis of acute lung injury are reviewed in the present articl

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HYPOTHESIS: Chronic rotator cuff tears are associated with irreversible architectural muscle changes and a high rate of repair failure. The changes observed in man and their irreversibility with a single stage repair can be reproduced in sheep. It was the purpose of this experiment to test the hypothesis that slow, continuous elongation of a retracted musculotendinous unit allows reversal of the currently irreversible structural muscle changes. MATERIALS AND METHODS: The infraspinatus tendon of 12 sheep was released using a greater tuberosity osteotomy and allowed to retract for 4 months. Then, a new device was mounted on the scapular spine and used to extend the infraspinatus muscuculotendinous unit transcutaneously by 1 mm per day. Thereafter, the tendon was repaired back to the greater tuberosity. We assessed the muscular architecture using magnetic resonance imaging, macroscopic dissection, histology, and electron microscopy. Fatty infiltration (in Hounsfield units 1/4 HU) and muscular cross-sectional area (in % of the control side) were monitored with computed tomography at tendon release, initiation of elongation, repair, and at sacrifice. RESULTS: Sixteen weeks after tendon release, the mean tendon retraction was 29 +/- 6 mm (14% of original length, P = .008). In 8 sheep, elongation was achieved as planned (group I), but in 4, the elongation failed technically (group II). The mean traction time was 24 +/- 6 days with a mean traction distance of 19 +/- 4 mm. At sacrifice, the mean pennation angle in the infraspinatus of group I was not different from the control side (29.8 degrees +/-7.5 degrees vs. 30 degrees +/-6 degrees , P = .575). In group II, the pennation angle had increased from 30 degrees +/-6 degrees to 55 degrees +/-14 degrees (P = .035). There was no fatty infiltration at the time of tendon release. After retraction, there was a significant increase in fatty infiltration of the infraspinatus muscle and a decrease of its cross-sectional area to 57% of the contralateral side (P = .0001). During traction, the degree of fatty infiltration remained unchanged (36 HU to 38 HU, P = .381), and atrophy improved to a muscle square area of 78% of the contralateral side (P = .0001) in group I. In group II, an increase of fatty infiltration was measured from 36 HU to 28 HU; however, this increase was not significant (P = .144). Atrophy did not change in group II (57-55%, P = .946). At sacrifice, the remaining muscle mass was 64% in group I and 46% in group II (P = .019). DISCUSSION: Our preliminary results document, that continuous elongation of a retracted, fatty infiltrated and atrophied musculotendinous unit is technically feasible. CONCLUSION: In the sheep, continuous elongation can lead to restoration of normal muscle architecture, to partial reversal of muscle atrophy, and to arrest of the progression of fatty infiltration. LEVEL OF EVIDENCE: Basic science level 2; Prospective comparative therapeutic study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulmonary lipofibroblasts are thought to be involved in lung development, regeneration, vitamin A storage, and surfactant synthesis. Most of the evidence for these important functions relies on mouse or rat studies. Therefore, the present study was designed to investigate the presence of lipofibroblasts in a variety of early postnatal and adult mammalian species (including humans) to evaluate the ability to generalize functions of this cell type for other species. For this purpose, lung samples from 14 adult mammalian species as well as from postnatal mice, rats, and humans were investigated using light and electron microscopic stereology to obtain the volume fraction and the total volume of lipid bodies. In adult animals, lipid bodies were observed only, but not in all rodents. In all other species, no lipofibroblasts were observed. In rodents, lipid body volume scaled with body mass with an exponent b = 0.73 in the power law equation. Lipid bodies were not observed in postnatal human lungs but showed a characteristic postnatal increase in mice and rats and persisted at a lower level in the adult animals. Among 14 mammalian species, lipofibroblasts were only observed in rodents. The great increase in lipid body volume during early postnatal development of the mouse lung confirms the special role of lipofibroblasts during rodent lung development. It is evident that the cellular functions of pulmonary lipofibroblasts cannot be transferred easily from rodents to other species, in particular humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Listeria monocytogenes rhombencephalitis is a severe progressive disease despite a swift intrathecal immune response. Based on previous observations, we hypothesized that the disease progresses by intra-axonal spread within the central nervous system. To test this hypothesis, neuroanatomical mapping of lesions, immunofluorescence analysis, and electron microscopy were performed on brains of ruminants with naturally occurring rhombencephalitis. In addition, infection assays were performed in bovine brain cell cultures. Mapping of lesions revealed a consistent pattern with a preferential affection of certain nuclear areas and white matter tracts, indicating that Listeria monocytogenes spreads intra-axonally within the brain along interneuronal connections. These results were supported by immunofluorescence and ultrastructural data localizing Listeria monocytogenes inside axons and dendrites associated with networks of fibrillary structures consistent with actin tails. In vitro infection assays confirmed that bacteria were moving within axon-like processes by employing their actin tail machinery. Remarkably, in vivo, neutrophils invaded the axonal space and the axon itself, apparently by moving between split myelin lamellae of intact myelin sheaths. This intra-axonal invasion of neutrophils was associated with various stages of axonal degeneration and bacterial phagocytosis. Paradoxically, the ensuing adaxonal microabscesses appeared to provide new bacterial replication sites, thus supporting further bacterial spread. In conclusion, intra-axonal bacterial migration and possibly also the innate immune response play an important role in the intracerebral spread of the agent and hence the progression of listeric rhombencephalitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To identify programmed cell death (PCD) pathways involved in N-methyl-N-nitrosourea (MNU)-induced photoreceptor (PR) degeneration. METHODS: Adult C57BL/6 mice received a single MNU i.p. injection (60 mg/kg bodyweight), and were observed over a period of 7 days. Degeneration was visualized by H&E overview staining and electron microscopy. PR cell death was measured by quantifying TUNEL-positive cells in the outer nuclear layer (ONL). Activity measurements of key PCD enzymes (calpain, caspases) were used to identify the involved cell death pathways. Furthermore, the expression level of C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78), key players in endoplasmic reticulum (ER) stress-induced apoptosis, was analyzed using quantitative real-time PCR. RESULTS: A decrease in ONL thickness and the appearance of apoptotic PR nuclei could be detected beginning 3 days post-injection (PI). This was accompanied by an increase of TUNEL-positive cells. Significant upregulation of activated caspases (3, 9, 12) was found at different time periods after MNU injection. Additionally, several other players of nonconventional PCD pathways were also upregulated. Consequently, calpain activity increased in the ONL, with a maximum on day 7 PI and an upregulation of CHOP and GRP78 expression beginning on day 1 PI was found. CONCLUSIONS: The data indicate that regular apoptosis is the major cause of MNU-induced PR cell death. However, alternative PCD pathways, including ER stress and calpain activation, are also involved. Knowledge about the mechanisms involved in this mouse model of PR degeneration could facilitate the design of putative combinatory therapeutic approaches.