64 resultados para Lattice distortions
Resumo:
With the physical Higgs mass the standard model symmetry restoration phase transition is a smooth cross-over. We study the thermodynamics of the cross-over using numerical lattice Monte Carlo simulations of an effective SU(2)×U(1) gauge+Higgs theory, significantly improving on previously published results. We measure the Higgs field expectation value, thermodynamic quantities like pressure, energy density, speed of sound and heat capacity, and screening masses associated with the Higgs and Z fields. While the cross-over is smooth, it is very well defined with a width of only ∼5 GeV. We measure the cross-over temperature from the maximum of the susceptibility of the Higgs condensate, with the result Tc=159.5±1.5 GeV. Outside of the narrow cross-over region the perturbative results agree well with nonperturbative ones.
Resumo:
We present results on the nucleon scalar, axial, and tensor charges as well as on the momentum fraction, and the helicity and transversity moments. The pion momentum fraction is also presented. The computation of these key observables is carried out using lattice QCD simulations at a physical value of the pion mass. The evaluation is based on gauge configurations generated with two degenerate sea quarks of twisted mass fermions with a clover term. We investigate excited states contributions with the nucleon quantum numbers by analyzing three sink-source time separations. We find that, for the scalar charge, excited states contribute significantly and to a less degree to the nucleon momentum fraction and helicity moment. Our result for the nucleon axial charge agrees with the experimental value. Furthermore, we predict a value of 1.027(62) in the MS¯¯¯¯¯ scheme at 2 GeV for the isovector nucleon tensor charge directly at the physical point. The pion momentum fraction is found to be ⟨x⟩π±u−d=0.214(15)(+12−9) in the MS¯¯¯¯¯ at 2 GeV.
Resumo:
We present a comparison of different definitions of the topological charge on the lattice, using a small-volume ensemble with 2 flavours of dynamical twisted mass fermions. The investigated definitions are: index of the overlap Dirac operator, spectral projectors, spectral flow of the HermitianWilson- Dirac operator and field theoretic with different kinds of smoothing of gauge fields (HYP and APE smearings, gradient flow, cooling). We also show some results on the topological susceptibility.
Resumo:
Proof-theoretic methods are developed and exploited to establish properties of the variety of lattice-ordered groups. In particular, a hypersequent calculus with a cut rule is used to provide an alternative syntactic proof of the generation of the variety by the lattice-ordered group of automorphisms of the real number chain. Completeness is also established for an analytic (cut-free) hypersequent calculus using cut elimination and it is proved that the equational theory of the variety is co-NP complete.