155 resultados para LUTEINIZING HORMONE SURGE
Resumo:
INTRODUCTION: Autogenous bone is the most successful bone-grafting material; however, multiple disadvantages continue to drive developments of improved methods for bone regeneration. AIM: The aim of the present study was to test the hypothesis that an arginine-glycine-aspartic acid (RGD) modified polyethylene glycol-based matrix (PEG) containing covalently bound peptides of the parathyroid hormone (PTH(1-34)) enhances bone regeneration to a degree similar to autogenous bone. MATERIAL AND METHODS: Six American foxhounds received a total of 48 cylindrical titanium implants placed in the mandible between the first premolar and the second molar. Five, respectively, 7 months following tooth extraction, implants were placed into the center of surgically created defects. This resulted in a circumferential bone defect simulating an alveolar defect with a circular gap of 1.5 mm. Four treatment modalities were randomly allocated to the four defects per side: (1) PEG-matrix containing 20 microg/ml of PTH(1-34), and 350 microg/ml cys-RGD peptide, (2) PEG alone, (3) autogenous bone and (4) empty defects. Histomorphometric analysis was performed 4 and 12 weeks after implantation. The area fraction of newly formed bone was determined within the former defect and the degree of bone-to-implant contact (BIC) was evaluated both in the defect region and in the apical region of the implant. For statistical analysis ANOVA and subsequent pairwise Student's t-test were applied. RESULTS: Healing was uneventful and all implants were histologically integrated. Histomorphometric analysis after 4 weeks showed an average area fraction of newly formed bone of 41.7+/-1.8% for matrix-PTH, 26.6+/-4.1% for PEG alone, 43.9+/-4.5% for autogenous bone, and 28.9+/-1.5% for empty defects. After 12 weeks, the respective values were 49.4+/-7.0% for matrix-PTH, 39.3+/-5.7% for PEG alone, 50.5+/-3.4% for autogenous bone and 38.7+/-1.9% for empty defects. Statistical analysis after 4 and 12 weeks revealed significantly more newly formed bone in the PTH(1-34) group compared with PEG alone or empty defects, whereas no difference could be detected against autogenous bone. Regarding BIC no significant difference was observed between the four treatment groups neither at 4 nor at 12 weeks. CONCLUSION: It is concluded that an RGD-modified PEG hydrogel containing PTH(1-34) is an effective matrix system to obtain bone regeneration.
Resumo:
CONTEXT: A polymorphism of the GH receptor (GHR) gene resulting in genomic deletion of exon 3 (GHR-d3) has been associated with responsiveness to GH therapy. However, the data reported so far do vary according to the underlying condition, replacement dose, and duration of the treatment. OBJECTIVE, DESIGN: The aim of this study was to analyze the impact of the GHR genotypes in terms of the initial height velocity (HV) resulting from treatment and the impact upon adult height in patients suffering from severe isolated GH deficiency. CONTROLS, PATIENTS, SETTING: A total of 181 subjects (peak stimulated GH
Resumo:
CONTEXT AND OBJECTIVE: Alteration of exon splice enhancers (ESE) may cause autosomal dominant GH deficiency (IGHD II). Disruption analysis of a (GAA) (n) ESE motif within exon 3 by introducing single-base mutations has shown that single nucleotide mutations within ESE1 affect pre-mRNA splicing. DESIGN, SETTING, AND PATIENTS: Confirming the laboratory-derived data, a heterozygous splice enhancer mutation in exon 3 (exon 3 + 2 A-->C) coding for GH-E32A mutation of the GH-1 gene was found in two independent pedigrees, causing familial IGHD II. Because different ESE mutations have a variable impact on splicing of exon 3 of GH and therefore on the expression of the 17.5-kDa GH mutant form, the GH-E32A was studied at the cellular level. INTERVENTIONS AND RESULTS: The splicing of GH-E32A, assessed at the protein level, produced significantly increased amounts of 17.5-kDa GH isoform (55% of total GH protein) when compared with the wt-GH. AtT-20 cells coexpressing both wt-GH and GH-E32A presented a significant reduction in cell proliferation as well as GH production after forskolin stimulation when compared with the cells expressing wt-GH. These results were complemented with confocal microscopy analysis, which revealed a significant reduction of the GH-E32A-derived isoform colocalized with secretory granules, compared with wt-GH. CONCLUSION: GH-E32A mutation found within ESE1 weakens recognition of exon 3 directly, and therefore, an increased production of the exon 3-skipped 17.5-kDa GH isoform in relation to the 22-kDa, wt-GH isoform was found. The GH-E32A mutant altered stimulated GH production as well as cell proliferation, causing IGHD II.
Resumo:
CONTEXT AND OBJECTIVE: A single missense mutation in the GH-1 gene converting codon 77 from arginine (R) to cysteine (C) yields a mutant GH-R77C peptide, which was described as natural GH antagonist. DESIGN, SETTING, AND PATIENTS: Heterozygosity for GH-R77C/wt-GH was identified in a Syrian family. The index patient, a boy, was referred for assessment of his short stature (-2.5 SD score) and partial GH insensitivity was diagnosed. His mother and grandfather were also carrying the same mutation and showed partial GH insensitivity with modest short stature. INTERVENTIONS AND RESULTS: Functional characterization of the GH-R77C was performed through studies of GH receptor binding and activation of Janus kinase 2/Stat5 pathway. No differences in the binding affinity and bioactivity between wt-GH and GH-R77C were found. Similarly, cell viability and proliferation after expression of both GH peptides in AtT-20 cells were identical. Quantitative confocal microscopy analysis revealed no significant difference in the extent of subcellular colocalization between wt-GH and GH-R77C with endoplasmic reticulum, Golgi, or secretory vesicles. Furthermore studies demonstrated a reduced capability of GH-R77C to induce GHR/GHBP gene transcription rate when compared with wt-GH. CONCLUSION: Reduced GH receptor/GH-binding protein expression might be a possible cause for the partial GH insensitivity with delay in growth and pubertal development found in our patients. In addition, this group of patients deserves further attention because they could represent a distinct clinical entity underlining that an altered GH peptide may also have a direct impact on GHR/GHBP gene expression causing partial GH insensitivity.
Resumo:
OBJECTIVE: Data on the GH-induced catch-up growth of severely GH-deficient children affected by monogenetic defects are missing. PATIENTS: Catch-up growth of 21 prepubertal children (6 females, 15 males) affected with IGHD type II was analyzed in a retrospective chart review. At start of therapy, mean age was 6.2 years (range, 1.6-15.0), mean height SDS was -4.7 (-7.6 to -2.2), mean IGF-I SDS was -6.2 (-10.1 to -2.2). GH was substituted using a mean dose of 30.5microg/kg*d. RESULTS: Catch-up growth was characterized by a mean height gain of +0.92, +0.82, and +0.61 SDS after 1, 2, and 3 years of GH therapy, respectively. Mean height velocities were 10.7, 9.2 and 7.7cm/year during the first three years. Mean duration of complete catch-up growth was 6 years (3-9). Mean height SDS reached was -0.97 (-2.3 to +1.1), which was within the range of the estimated target height of -0.60 SDS (-1.20 to -0.15). The younger and shorter the children were at start of therapy the better they grew during the first year independent of the dose. Mean bone age was delayed at start by 2.1 years and progressed by 2.5 years during the first two years of therapy. Incomplete catch-up growth was caused by late initiation or irregular administration of GH in four cases. CONCLUSIONS: Our data suggest that GH-treated children with severe IGHD show a sustained catch-up growth over 6 years (mean) and reach their target height range. This response to GH is considered to be characteristic for young children with severe growth retardation due to IGHD.
Resumo:
When a child is not following the normal, predicted growth curve, an evaluation for underlying illness and central nervous system abnormalities is required and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency. This article focuses on the GH gene, the various gene alterations, and their possible impact on the pituitary gland. Transcription factors regulating pituitary gland development may cause multiple pituitary hormone deficiency but may present initially as GH deficiency. The role of two most important transcription factors, POU1F1 (Pit-1) and PROP 1, is discussed.
Resumo:
Several studies have suggested that lipoproteins generated during the post-prandial phase are highly atherogenic, with modifications in low-density lipoproteins (LDL) size and density. In the present study we assessed post-prandial variations in LDL size and subclasses in patients with growth hormone deficiency (GHD).
Resumo:
Patients with growth hormone deficiency (GHD) have increased cardiovascular risk and may show elevated triglyceride and reduced high density lipoprotein (HDL) cholesterol concentrations, two lipid abnormalities usually accompanied by increased small dense LDL in the 'atherogenic lipoprotein phenotype' (ALP). In the present study, we directly investigated (1) whether hypopituitary patients with GHD have increased small dense LDL; (2) whether growth hormone replacement therapy (GHRT) beneficially impact on such particles; (3) the prevalence of ALP in GHD and GHRT patients.
Resumo:
In this study the regulation of GH-receptor gene (GHR/GHBP) transcription by different concentrations of GH (0, 12.5, 25, 50, 150, 500 ng/ml) with and without variable TSH concentrations (0.5, 2, 20 mU/l) in primary human thyroid cells cultured in serum-free hormonally-defined medium was studied. The incubation time was 6 h and GHR/GHBP mRNA expression was quantitatively assessed by using PCR amplification at hourly intervals. Correlating with the GH-concentrations added a constant and significant increase of GHR/GHBP gene transcription was found. After the addition of 12.5 ng/ml GH, GHR/GHBP mRNA concentration remained constant over the incubation period of 6 h but in comparison with the experiments where no GH was added there was a significant change of GHR/GHBP mRNA expression. Following the addition of 25 ng/ml GH a slight but further increase of GHR/GHBP transcription products was seen which increased even more in the experiments where higher GH concentrations were used. These data focusing on GHR/GHBP gene transcription derived from cDNA synthesis and quantitative PCR amplification were confirmed by run-on experiments. Furthermore, cycloheximide did not affect these changes supporting the notion that GH stimulates GHR/GHBP gene transcription directly. In a second set of experiments, in combination with variable TSH levels, identical GH concentrations were used and no difference in either GHR/GHBP mRNA levels or in transcription rate (run-on experiments) could be found. In conclusion, we report data showing that primary thyroid cells express functional GH-receptors in which GH has a direct and dose dependent effect on the GHR/GHBP gene transcription. Furthermore, TSH does not a have a major impact on GHR/GHBP gene regulation.
Resumo:
Nodular thyroid disease is a common problem. We present clinical guidelines for the management of patients with thyroid nodules, multinodular goiters and thyroid cysts for use by primary physicians. In the initial evaluation ultrasonography of the thyroid and fine-needle aspiration biopsy (FNAB) is recommended. FNAB has become the cornerstone in the evaluation of solitary thyroid nodules, cysts and dominant nodules within multinodular goiters. If the procedure is done properly, it should have a false-negative rate of less than 5% and a false-positive rate of not more than 1%. Thyroid radionuclide scans are less frequently used in the initial evaluation of a nodular goiter. Surgery is the primary therapy for patients with nodular thyroid disease. Other available treatment options are radioiodine and TSH-suppression with thyroxine. The main indications for surgery in euthyroid patients with thyroid nodule or with nontoxic multinodular goiter are recently documented or suspected malignancy, compression of the trachea and esophagus, significant growth of the nodule, recurrence of a cyst after aspiration, neck discomfort and cosmetic concern.