70 resultados para LATE-HOLOCENE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparisons of climate model hindcasts with independent proxy data are essential for assessing model performance in non-analogue situations. However, standardized palaeoclimate data sets for assessing the spatial pattern of past climatic change across continents are lacking for some of the most dynamic episodes of Earth’s recent past. Here we present a new chironomid-based palaeotemperature dataset designed to assess climate model hindcasts of regional summer temperature change in Europe during the late-glacial and early Holocene. Latitudinal and longitudinal patterns of inferred temperature change are in excellent agreement with simulations by the ECHAM-4 model, implying that atmospheric general circulation models like ECHAM-4 can successfully predict regionally diverging temperature trends in Europe, even when conditions differ significantly from present. However, ECHAM-4 infers larger amplitudes of change and higher temperatures during warm phases than our palaeotemperature estimates, suggesting that this and similar models may overestimate past and potentially also future summer temperature changes in Europe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Quaternary Vakinankaratra volcanic field in the central Madagascar highlands consists of scoria cones, lava flows, tuff rings, and maars. These volcanic landforms are the result of processes triggered by intracontinental rifting and overlie Precambrian basement or Neogene volcanic rocks. Infrared-stimulated luminescence (IRSL) dating was applied to 13 samples taken from phreatomagmatic eruption deposits in the Antsirabe–Betafo region with the aim of constraining the chronology of the volcanic activity. Establishing such a chronology is important for evaluating volcanic hazards in this densely populated area. Stratigraphic correlations of eruption deposits and IRSL ages suggest at least five phreatomagmatic eruption events in Late Pleistocene times. In the Lake Andraikiba region, two such eruption layers can be clearly distinguished. The older one yields ages between 109 ± 15 and 90 ± 11 ka and is possibly related to an eruption at the Amboniloha volcanic complex to the north. The younger one gives ages between 58 ± 4 and 47 ± 7 ka and is clearly related to the phreatomagmatic eruption that formed Lake Andraikiba. IRSL ages of a similar eruption deposit directly overlying basement laterite in the vicinity of the Fizinana and Ampasamihaiky volcanic complexes yield coherent ages of 68 ± 7 and 65 ± 8 ka. These ages provide the upper age limit for the subsequently developed Iavoko, Antsifotra, and Fizinana scoria cones and their associated lava flows. Two phreatomagmatic deposits, identified near Lake Tritrivakely, yield the youngest IRSL ages in the region, with respective ages of 32 ± 3 and 19 ± 2 ka. The reported K-feldspar IRSL ages are the first recorded numerical ages of phreatomagmatic eruption deposits in Madagascar, and our results confirm the huge potential of this dating approach for reconstructing the volcanic activity of Late Pleistocene to Holocene volcanic provinces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim We used combined palaeobotanical and genetic data to assess whether Norway spruce (Picea abies) and Siberian spruce (Picea obovata), two major components of the Eurasian boreal forests, occupied separate glacial refugia, and to test previous hypotheses on their distinction, geographical delimitation and introgression. Location The range of Norway spruce in northern Europe and Siberian spruce in northern Asia. Methods Pollen data and recently compiled macrofossil records were summarized for the Last Glacial Maximum (LGM), late glacial and Holocene. Genetic variation was assessed in 50 populations using one maternally (mitochondrial nad1) and one paternally (chloroplast trnT–trnL) inherited marker and analysed using spatial analyses of molecular variance (SAMOVA). Results Macrofossils showed that spruce was present in both northern Europe and Siberia at the LGM. Congruent macrofossil and pollen data from the late glacial suggested widespread expansions of spruce in the East European Plain, West Siberian Plain, southern Siberian mountains and the Baikal region. Colonization was largely completed during the early Holocene, except in the formerly glaciated area of northern Europe. Both DNA markers distinguished two highly differentiated groups that correspond to Norway spruce and Siberian spruce and coincide spatially with separate LGM spruce occurrences. The division of the mtDNA variation was geographically well defined and occurred to the east of the Ural Mountains along the Ob River, whereas the cpDNA variation showed widespread admixture. Genetic diversity of both DNA markers was higher in western than in eastern populations. Main conclusions North Eurasian Norway spruce and Siberian spruce are genetically distinct and occupied separate LGM refugia, Norway spruce on the East European Plain and Siberian spruce in southern Siberia, where they were already widespread during the late glacial. They came into contact in the basin of the Ob River and probably hybridized. The lower genetic diversity in the eastern populations may indicate that Siberian spruce suffered more from past climatic fluctuations than Norway spruce.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1 The Early Holocene sediment of a lake at tree line (Gouillé Rion, 2343 m a.s.l.) in the Swiss Central Alps was sampled for plant macrofossils. Thin (0.5 cm) slices, representing time intervals of c. 50 years each from 11 800 to 7800 cal. year bp, were analysed and the data compared with independent palaeoclimatic proxies to study vegetational responses to environmental change. 2 Alpine plant communities (e.g. with Salix herbacea) were established at 11 600–11 500 cal. year bp, when oxygen-isotope records showed that temperatures increased by c. 3–4 °C within decades. Larix decidua trees reached the site at c. 11 350 cal. year bp, probably in response to further warming by 1–2 °C. Forests dominated by L. decidua persisted until 9600 cal. year bp, when Pinus cembra became more important. 3 The dominance of Larix decidua for two millennia is explained by dry summer conditions, and possibly low winter temperatures, which favoured it over the late-successional Pinus cembra. Environmental conditions were a result of variations in the earth's orbit, leading to a maximum of summer and a minimum of winter solar radiation. Other heliophilous and drought-adapted species, such as Dryas octopetala and Juniperus nana, could persist in the open L. decidua forests, but were out-competed when the shade-tolerant P. cembra expanded. 4 The relative importance of Larix decidua decreased during periods of diminished solar radiation at 11 100, 10 100 and 9400 cal. year bp. Stable concentrations of L. decidua indicate that these percentage oscillations were caused by temporary increases of Pinus cembra, Dryas octopetala and Juniperus nana that can be explained by increases in moisture and/or decreases in summer temperature. 5 The final collapse of Larix decidua at 8400 cal. year bp was possibly related to abrupt climatic cooling as a consequence of a large meltwater input to the North Atlantic. Similarly, the temporary exclusion of Pinus cembra from tree line at 10 600–10 200 cal. year bp may be related to slowing down of thermohaline circulation at 10 700–10 300 cal. year bp. 6 Our results show that tree line vegetation was in dynamic equilibrium with climate, even during periods of extraordinarily rapid climatic change. They also imply that forecasted global warming may trigger rapid upslope movements of the tree line of up to 800 m within a few decades or centuries at most, probably inducing large-scale displacements of plant species as well as irrecoverable biodiversity losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pollen and plant macrofossils were analysed at Sägistalsee (1935 m asl), a small lake near timber-line in the Swiss Northern Alps. Open forests with Pinus cembra and Abies alba covered the catchment during the early Holocene (9000–6300 cal. BP), suggesting subcontinental climate conditions. After the expansion of Picea abies between 6300 and 6000 cal. BP the subalpine forest became denser and the tree-line reached its maximum elevation at around 2260 m asl. Charcoal fragments in the macrofossil record indicate the beginning of Late-Neolithic human impact at ca. 4400 cal. BP, followed by a extensive deforestation and lowering of the forest-limit in the catchment of Sägistalsee at 3700 cal. BP (Bronze Age). Continuous human activity, combined with a more oceanic climate during the later Holocene, led to the local extinction of Pinus cembra and Abies alba and favoured the mass expansion of Picea and Alnus viridis in the subalpine area of the Northern Alps. The periods before 6300 and after 3700 cal. BP are characterised by high erosion activity in the lake's catchment, whereas during the phase of dense Picea-Pinus cembra-Abies forests (6300–3700 cal. BP) soils were stable and sediment-accumulation rates in the lake were low. Due to decreasing land-use at higher altitudes during the Roman occupation and the Migration period, forests spread beween ca. 2000 and 1500 cal. BP, before human impact increased again in the early Middle Ages. Recent reforestation due to land-use changes in the 20th century is recorded in the top sediments. Pollen-inferred July temperature and annual precipitation suggest a trend to cooler and more oceanic climate starting at about 5500 cal. BP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adaptation potential of forests to rapid climatic changes can be assessed from vegetation dynamics during past climatic changes as preserved in fossil pollen data. However, pollen data reflect the integrated effects of climate and biotic processes, such as establishment, survival, competition, and migration. To disentangle these processes, we compared an annually laminated late Würm and Holocene pollen record from the Central Swiss Plateau with simulations of a dynamic forest patch model. All input data used in the simulations were largely independent from pollen data; i.e. the presented analysis is non-circular. Temperature and precipitation scenarios were based on reconstructions from pollen-independent sources. The earliest arrival times of the species at the study site after the last glacial were inferred from pollen maps. We ran a series of simulations under different combinations of climate and immigration scenarios. In addition, the sensitivity of the simulated presence/absence of four major species to changes in the climate scenario was examined. The pattern of the pollen record could partly be explained by the used climate scenario, mostly by temperature. However, some features, in particular the absence of most species during the late Würm could only be simulated if the winter temperature anomalies of the used scenario were decreased considerably. Consequently, we had to assume in the simulations, that most species immigrated during or after the Younger Dryas (12 000 years BP), Abies and Fagus even later. Given the timing of tree species immigration, the vegetation was in equilibrium with climate during long periods, but responded with lags at the time-scale of centuries to millennia caused by a secondary succession after rapid climatic changes such as at the end of Younger Dryas, or immigration of dominant taxa. Climate influenced the tree taxa both directly and indirectly by changing inter-specific competition. We concluded, that also during the present fast climatic change, species migration might be an important process, particularly if geographic barriers, such as the Alps are in the migrational path.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pollen and plant-macrofossil data are presented for two lakes near the timberline in the Italian (Lago Basso, 2250 m) and Swiss Central Alps (Gouille Rion, 2343 m). The reforestation at both sites started at 9700-9500 BP with Pinus cembra, Larbc decidua, and Betula. The timberline reached its highest elevation between 8700 and 5000 BP and retreated after 5000 BP, due to a mid-Holocene climatic change and increasing human impact since about 3500 BP (Bronze Age). The expansion of Picea abies at Lago Basso between ca. 7500 and 6200 BP was probably favored by cold phases accompanied by increased oceanicity, whereas in the area of Gouille Rion, where spruce expanded rather late (between 4500 and 3500 BP), human influence equally might have been important. The mass expansion of Alnus viridis between ca. 5000 and 3500 BP probably can be related to both climatic change and human activity at timberline. During the early and middle Holocene a series of timberline fluctuations is recorded as declines in pollen and macrofossil concentrations of the major tree species, and as increases in nonarboreal pollen in the pollen percentage diagram of Gouille Rion. Most of ·the periods of low timberline can be correlated by radiocarbon dating with climatic changes in the Alps as indicated by glacier ad­ vances in combination with palynological records, solifluction, and dendrocli­ matical data. Lago Basso and Gouille Rion are the only sites in the Alps showing complete palaeobotanical records of cold phases between 10,000 and 2000 BP with very good time control. The altitudinal range of the Holocene treeline fluc­ tuations caused by climate most likely was not more than 100 to 150 m. A possible correlation of a cold period at ca. 7500-6500 BP (Misox oscil­ lation) in the Alps is made with paleoecological data from North America and Scandinavia and a climatic signal in the GRIP ice core from central Greenland 8200 yr ago (ca. 7400 yr uncal. BP).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The number of well-dated pollen diagrams in Europe has increased considerably over the last 30 years and many of them have been submitted to the European Pollen Database (EPD). This allows for the construction of increasingly precise maps of Holocene vegetation change across the continent. Chronological information in the EPD has been expressed in uncalibrated radiocarbon years, and most chronologies to date are based on this time scale. Here we present new chronologies for most of the datasets stored in the EPD based on calibrated radiocarbon years. Age information associated with pollen diagrams is often derived from the pollen stratigraphy itself or from other sedimentological information. We reviewed these chronological tie points and assigned uncertainties to them. The steps taken to generate the new chronologies are described and the rationale for a new classification system for age uncertainties is introduced. The resulting chronologies are fit for most continental-scale questions. They may not provide the best age model for particular sites, but may be viewed as general purpose chronologies. Taxonomic particularities of the data stored in the EPD are explained. An example is given of how the database can be queried to select samples with appropriate age control as well as the suitable taxonomic level to answer a specific research question.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the present-day vegetation, stratigraphy and developmental history of the mire of Egelsee-Moor (Salzburg, Austria; 45°45′N, 13°8.5′E, 700 m a.s.l., 15 ha in area) since the early Late Glacial on the basis of 4 transects with 14 trial borings across the peatland. We present a vegetation map of the mire, a longitudinal section through the peat body based on six cores showing the peat types, overview macrofossil diagrams of six cores showing the local mire development and two pollen diagrams covering the Late Glacial and Holocene. The chronology of the diagrams depends on biostratigraphic dating for the Late Glacial and early Holocene and radiocarbon dating for the remaining Holocene. The northern part of the mire originated through terrestrialisation of nutrient-rich, mostly inundated fen and the southern part through paludification of wet soils. The very small lake of today was a reservoir until recently for providing water-power for timber rafting (‘Holztrift’). The mire vegetation today is a complex of forested parts (mainly planted Pinus sylvestris and Thuja occidentalis, but also spontaneous Picea abies, Betula pubescens and Frangula alnus), reed-lands (Phragmites) and litter meadows (Molinietum, Schoenetum, etc.). The central part has hummock-hollow complexes with regionally rare species of transitional mires (Drosera anglica, D. intermedia, Lycopodiella inundata, Scorpidium scorpioides, Sphagnum platyphyllum, S. subnitens). The results indicate that some of the mid-Holocene sediments may have been removed by the timber-rafting practices, and that water extraction from the hydrological catchment since 1967 has resulted in a partial shift of transitional mire to ombrotrophic bog. The latter potentially endangers the regionally rare species and was used as an argument to stop further water extraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic properties of a sediment core from a high altitude lake in the Swiss Alps were compared with palynological and geochemical data to link climatic and mineral magnetic variations. According to pollen data, the sediments extend from the present to the Younger Dryas, i.e., they cover more than 10,000 years of environmental change in the Alps. The major change in magnetic properties corresponds to the climatic warming of the early Holocene. High-coercivity magnetic minerals that characterize the Late Glacial period almost disappeared during the Holocene and the concentration of ferrimagnetic minerals increased sharply. The contribution of superparamagnetic grains also decreased in the Holocene sediments. Similar variations in {SP} content and coercivity, of smaller magnitude, are found in the Holocene and are interpreted to represent minor climatic variations. Comparison with the historical record of the last 1000 years confirms this interpretation. The magnetic mineralogy, the superparamagnetic contents, and the {IRM} intensity in the coarse-grained, Late Glacial sediments are similar to those measured in the catchment bedrock. This indicates a detrital origin. The different properties and the higher concentration of magnetic minerals in the Holocene sediments are due to authigenic phases. Magnetic properties provide a high resolution record of climatic change. They are sensitive even to small variations that are not recorded in the pollen or {LOI} data. Magnetic parameters show fine-scale variation and constitute a valuable supplement to conventional climatic indicators.