76 resultados para Immunologic Deficiency Syndromes -- genetics -- immunology
Resumo:
There has been recent progress in the understanding of the pathogenesis of the hypereosinophilic syndromes (HES). This led to the distinction of subgroups, in which the underlying cause has been identified. Consequently, new treatment options became available, such as imatinib and mepolizumab, which proved to be promising. This article summarizes these new pharmacologic approaches to the therapy of HES.
Resumo:
Nose-ear-throat manifestations of immunodeficiency disorders represent a diagnostic challenge for clinicians as these diseases often constitute the initial sign for connective disorders or autoimmune disease. The history of chronic rhinosinusitis and conductive hearing loss is often non specific. Therefore attention to an HLA class I deficiency must be considered if the disease has not been diagnosed on routine examination. One of the syndromes is due to a defective TAP complex, the peptide transporter complex associated with antigen presentation. Herein, we report two sisters with TAP-deficiency. The treatment of choice for TAP-deficient patients is conservative.
Resumo:
BACKGROUND: H1 antihistamines increase safety during allergen-specific immunotherapy and might influence the outcome because of immunoregulatory effects. OBJECTIVE: We sought to analyze the influence of 5 mg of levocetirizine (LC) on the safety, efficacy, and immunologic effects of ultrarush honeybee venom immunotherapy (BVIT). METHOD: In a double-blind, placebo-controlled study 54 patients with honeybee venom allergy received LC or placebo from 2 days before BVIT to day 21. Side effects during dose increase and systemic allergic reactions (SARs) to a sting challenge after 120 days were analyzed. Allergen-specific immune response was investigated in skin, serum, and allergen-stimulated T-cell cultures. RESULTS: Side effects were significantly more frequent in patients receiving placebo. Four patients receiving placebo dropped out because of side effects. SARs to the sting challenge occurred in 8 patients (6 in the LC group and 2 in the placebo group). Seven SARs were only cutaneous, and 1 in the placebo group was also respiratory. Difference of SARs caused by the sting challenge was insignificant. Specific IgG levels increased significantly in both groups. Major allergen phospholipase A(2)-stimulated T cells from both groups showed a slightly decreased proliferation. The decrease in IFN-gamma and IL-13 levels with placebo was not prominent with LC, whereas IL-10 levels showed a significant increase in the LC group only. Decreased histamine receptor (HR)1/HR2 ratio in allergen-specific T cells on day 21 in the placebo group was prevented by LC. CONCLUSIONS: LC reduces side effects during dose increase without influencing the efficacy of BVIT. LC modulates the natural course of allergen-specific immune response and affects the expression of HRs and cytokine production by allergen-specific T cells.
Resumo:
Oculofaciocardiodental (OFCD) and Lenz microphthalmia syndromes form part of a spectrum of X-linked microphthalmia disorders characterized by ocular, dental, cardiac and skeletal anomalies and mental retardation. The two syndromes are allelic, caused by mutations in the BCL-6 corepressor gene (BCOR). To extend the series of phenotypes associated with pathogenic mutations in BCOR, we sequenced the BCOR gene in patients with (1) OFCD syndrome, (2) putative X-linked ('Lenz') microphthalmia syndrome, (3) isolated ocular defects and (4) laterality phenotypes. We present a new cohort of females with OFCD syndrome and null mutations in BCOR, supporting the hypothesis that BCOR is the sole molecular cause of this syndrome. We identify for the first time mosaic BCOR mutations in two females with OFCD syndrome and one apparently asymptomatic female. We present a female diagnosed with isolated ocular defects and identify minor features of OFCD syndrome, suggesting that OFCD syndrome may be mild and underdiagnosed. We have sequenced a cohort of males diagnosed with putative X-linked microphthalmia and found a mutation, p.P85L, in a single case, suggesting that BCOR mutations are not a major cause of X-linked microphthalmia in males. The absence of BCOR mutations in a panel of patients with non-specific laterality defects suggests that mutations in BCOR are not a major cause of isolated heart and laterality defects. Phenotypic analysis of OFCD and Lenz microphthalmia syndromes shows that in addition to the standard diagnostic criteria of congenital cataract, microphthalmia and radiculomegaly, patients should be examined for skeletal defects, particularly radioulnar synostosis, and cardiac/laterality defects.
Resumo:
BACKGROUND Defects of the mitochondrial respiratory chain complex II (succinate dehydrogenase (SDH) complex) are extremely rare. Of the four nuclear encoded proteins composing complex II, only mutations in the 70 kDa flavoprotein (SDHA) and the recently identified complex II assembly factor (SDHAF1) have been found to be causative for mitochondrial respiratory chain diseases. Mutations in the other three subunits (SDHB, SDHC, SDHD) and the second assembly factor (SDHAF2) have so far only been associated with hereditary paragangliomas and phaeochromocytomas. Recessive germline mutations in SDHB have recently been associated with complex II deficiency and leukodystrophy in one patient. METHODS AND RESULTS We present the clinical and molecular investigations of the first patient with biochemical evidence of a severe isolated complex II deficiency due to compound heterozygous SDHD gene mutations. The patient presented with early progressive encephalomyopathy due to compound heterozygous p.E69 K and p.*164Lext*3 SDHD mutations. Native polyacrylamide gel electrophoresis and western blotting demonstrated an impaired complex II assembly. Complementation of a patient cell line additionally supported the pathogenicity of the novel identified mutations in SDHD. CONCLUSIONS This report describes the first case of isolated complex II deficiency due to recessive SDHD germline mutations. We therefore recommend screening for all SDH genes in isolated complex II deficiencies. It further emphasises the importance of appropriate genetic counselling to the family with regard to SDHD mutations and their role in tumorigenesis.
Resumo:
Microsomal P450 enzymes, which metabolize drugs and catalyze steroid biosynthesis require electron donation from NADPH via P450 oxidoreductase (POR). POR knockout mice are embryonically lethal, but we found recessive human POR missense mutations causing disordered steroidogenesis and Antley-Bixler syndrome (ABS), a skeletal malformation syndrome featuring craniosynostosis. Dominant mutations in exons 8 and 10 of fibroblast growth factor receptor 2 (FGFR2) cause phenotypically related craniosynostosis syndromes and were reported in patients with ABS and normal steroidogenesis. Sequencing POR and FGFR2 exons in 32 patients with ABS and/or hormonal findings suggesting POR deficiency showed complete genetic segregation of POR and FGFR2 mutations. Fifteen patients carried POR mutations on both alleles, four carried POR mutations on 1 allele, nine carried FGFR2/3 mutations on one allele and no mutation was found in three patients. The 34 affected POR alleles included 10 with A287P, 7 with R457H, 9 other missense mutations and 7 frameshifts. These 11 missense mutations and 10 others identified by database mining were expressed in E. coli, purified to apparent homogeneity, and their catalytic capacities were measured in four assays: reduction of cytochrome c, oxidation of NADPH, and support of the 17alpha-hydroxylase and 17,20 lyase activities of human P450c17. As assessed by Vmax/Km, 17,20 lyase activity provided the best correlation with clinical findings. Modeling human POR on the X-ray crystal structure of rat POR shows that these mutant activities correlate well with their locations in the structure. POR deficiency is a new disease, distinct from the craniosynostosis syndromes caused by FGFR mutations.
Resumo:
Confirmation of suspected congenital factor XIII (FXIII) deficiency still represents a diagnostic challenge in the field of rare bleeding disorders. Because of the lack of awareness and difficulties associated with timing of blood sampling, FXIII laboratory assays, and interpretation of laboratory results, diagnoses of FXIII deficiency are still missed all over the world with potentially fatal consequences from severe bleeding complications. Better knowledge of FXIII biochemical properties and function and understanding of the principles and limitations of FXIII laboratory assays can prevent missed diagnoses, and patients will benefit from better care. This review gives a detailed overview and update about congenital FXIII deficiency, its epidemiology, and molecular genetics. It highlights the importance of newer specific FXIII assays and their principles to avoid any missed diagnosis of FXIII deficiency. This review also gives an update on the therapeutic options for patients suffering from this rare but life-threatening disease.
Resumo:
Animal-mediated pollination is essential in the reproductive biology of many flowering plants and tends to be associated with pollination syndromes, sets of floral traits that are adapted to particular groups of pollinators. The complexity and functional convergence of various traits within pollination syndromes are outstanding examples of biological adaptation, raising questions about their mechanisms and origins. In the genus Petunia, complex pollination syndromes are found for nocturnal hawkmoths (P. axillaris) and diurnal bees (P. integrifolia), with characteristic differences in petal color, corolla shape, reproductive organ morphology, nectar quantity, nectar quality, and fragrance. We dissected the Petunia syndromes into their most important phenotypic and genetic components. They appear to include several distinct differences, such as cell-growth and cell-division patterns in the basal third of the petals, elongation of the ventral stamens, nectar secretion and nectar sugar metabolism, and enzymatic differentiation in the phenylpropanoid pathway. In backcross-inbred lines of species-derived chromosome segments in a transposon tagging strain of P. hybrida, one to five quantitative trait loci were identified for each syndrome component. Two loci for stamen elongation and nectar volume were confirmed in introgression lines and showed large allelic differences. The combined data provide a framework for a detailed understanding of floral syndromes from their developmental and molecular basis to their impact on animal behavior. With its molecular genetic tools, this Petunia system provides a novel venue for a pattern of adaptive radiation that is among the most characteristic of flowering plants.
Resumo:
PURPOSE Survivin is a member of the inhibitor-of-apoptosis family. Essential for tumor cell survival and overexpressed in most cancers, survivin is a promising target for anti-cancer immunotherapy. Immunogenicity has been demonstrated in multiple cancers. Nonetheless, few clinical trials have demonstrated survivin-vaccine-induced immune responses. EXPERIMENTAL DESIGN This phase I trial was conducted to test whether vaccine EMD640744, a cocktail of five HLA class I-binding survivin peptides in Montanide(®) ISA 51 VG, promotes anti-survivin T-cell responses in patients with solid cancers. The primary objective was to compare immunologic efficacy of EMD640744 at doses of 30, 100, and 300 μg. Secondary objectives included safety, tolerability, and clinical efficacy. RESULTS In total, 49 patients who received ≥2 EMD640744 injections with available baseline- and ≥1 post-vaccination samples [immunologic-diagnostic (ID)-intention-to-treat] were analyzed by ELISpot- and peptide/MHC-multimer staining, revealing vaccine-activated peptide-specific T-cell responses in 31 patients (63 %). This cohort included the per study protocol relevant ID population for the primary objective, i.e., T-cell responses by ELISpot in 17 weeks following first vaccination, as well as subjects who discontinued the study before week 17 but showed responses to the treatment. No dose-dependent effects were observed. In the majority of patients (61 %), anti-survivin responses were detected only after vaccination, providing evidence for de novo induction. Best overall tumor response was stable disease (28 %). EMD640744 was well tolerated; local injection-site reactions constituted the most frequent adverse event. CONCLUSIONS Vaccination with EMD640744 elicited T-cell responses against survivin peptides in the majority of patients, demonstrating the immunologic efficacy of EMD640744.
Resumo:
Immunoglobulin A (IgA) serves as the basis of the secretory immune system by protecting the lining of mucosal sites from pathogens. In both humans and dogs, IgA deficiency (IgAD) is associated with recurrent infections of mucosal sites and immune-mediated diseases. Low concentrations of serum IgA have previously been reported to occur in a number of dog breeds but no generally accepted cut-off value has been established for canine IgAD. The current study represents the largest screening to date of IgA in dogs in terms of both number of dogs (n = 1267) and number of breeds studied (n = 22). Serum IgA concentrations were quantified by using capture ELISA and were found to vary widely between breeds. We also found IgA to be positively correlated with age (p < 0.0001). Apart from the two breeds previously reported as predisposed to low IgA (Shar-Pei and German shepherd), we identified six additional breeds in which ≥10% of all tested dogs had very low (<0.07 g/l) IgA concentrations (Hovawart, Norwegian elkhound, Nova Scotia duck tolling retriever, Bullterrier, Golden retriever and Labrador retriever). In addition, we discovered low IgA concentrations to be significantly associated with canine atopic dermatitis (CAD, p < 0.0001) and pancreatic acinar atrophy (PAA, p = 0.04) in German shepherds.
Resumo:
CONTEXT 3β-hydroxysteroid dehydrogenase deficiency (3βHSD) is a rare disorder of sexual development and steroidogenesis. There are two isozymes of 3βHSD, HSD3B1 and HSD3B2. Human mutations are known for the HSD3B2 gene which is expressed in the gonads and the adrenals. Little is known about testis histology, fertility and malignancy risk. OBJECTIVE To describe the molecular genetics, the steroid biochemistry, the (immuno-)histochemistry and the clinical implications of a loss-of-function HSD3B2 mutation. METHODS Biochemical, genetic and immunohistochemical investigations on human biomaterials. RESULTS A 46,XY boy presented at birth with severe undervirilization of the external genitalia. Steroid profiling showed low steroid production for mineralocorticoids, glucocorticoids and sex steroids with typical precursor metabolites for HSD3B2 deficiency. The genetic analysis of the HSD3B2 gene revealed a homozygous c.687del27 deletion. At pubertal age, he showed some virilization of the external genitalia and some sex steroid metabolites appeared likely through conversion of precursors secreted by the testis and converted by unaffected HSD3B1 in peripheral tissues. However, he also developed enlarged breasts through production of estrogens in the periphery. Testis histology in late puberty revealed primarily a Sertoli-cell-only pattern and only few tubules with arrested spermatogenesis, presence of few Leydig cells in stroma, but no neoplastic changes. CONCLUSIONS The testis with HSD3B2 deficiency due to the c.687del27 deletion does not express the defective protein. This patient is unlikely to be fertile and his risk for gonadal malignancy is low. Further studies are needed to obtain firm knowledge on malignancy risk for gonads harboring defects of androgen biosynthesis.
Resumo:
Cholesterol deficiency, a new autosomal recessive inherited genetic defect in Holstein cattle, has been recently reported to have an influence on the rearing success of calves. The affected animals show unresponsive diarrhea accompanied by hypocholesterolemia and usually die within the first weeks or months of life. Here, we show that whole genome sequencing combined with the knowledge about the pedigree and inbreeding status of a livestock population facilitates the identification of the causative mutation. We resequenced the entire genomes of an affected calf and a healthy partially inbred male carrying one copy of the critical 2.24-Mb chromosome 11 segment in its ancestral state and one copy of the same segment with the cholesterol deficiency mutation. We detected a single structural variant, homozygous in the affected case and heterozygous in the non-affected carrier male. The genetic makeup of this key animal provides extremely strong support for the causality of this mutation. The mutation represents a 1.3kb insertion of a transposable LTR element (ERV2-1) in the coding sequence of the APOB gene, which leads to truncated transcripts and aberrant splicing. This finding was further supported by RNA sequencing of the liver transcriptome of an affected calf. The encoded apolipoprotein B is an essential apolipoprotein on chylomicrons and low-density lipoproteins, and therefore, the mutation represents a loss of function mutation similar to autosomal recessive inherited familial hypobetalipoproteinemia-1 (FHBL1) in humans. Our findings provide a direct gene test to improve selection against this deleterious mutation in Holstein cattle.
Resumo:
Fatal hyperammonemia secondary to chemotherapy for hematological malignancies or following bone marrow transplantation has been described in few patients so far. In these, the pathogenesis of hyperammonemia remained unclear and was suggested to be multifactorial. We observed severe hyperammonemia (maximum 475 μmol/L) in a 2-year-old male patient, who underwent high-dose chemotherapy with carboplatin, etoposide and melphalan, and autologous hematopoietic stem cell transplantation for a neuroblastoma stage IV. Despite intensive care treatment, hyperammonemia persisted and the patient died due to cerebral edema. The biochemical profile with elevations of ammonia and glutamine (maximum 1757 μmol/L) suggested urea cycle dysfunction. In liver homogenates, enzymatic activity and protein expression of the urea cycle enzyme carbamoyl phosphate synthetase 1 (CPS1) were virtually absent. However, no mutation was found in CPS1 cDNA from liver and CPS1 mRNA expression was only slightly decreased. We therefore hypothesized that the acute onset of hyperammonemia was due to an acquired, chemotherapy-induced (posttranscriptional) CPS1 deficiency. This was further supported by in vitro experiments in HepG2 cells treated with carboplatin and etoposide showing a dose-dependent decrease in CPS1 protein expression. Due to severe hyperlactatemia, we analysed oxidative phosphorylation complexes in liver tissue and found reduced activities of complexes I and V, which suggested a more general mitochondrial dysfunction. This study adds to the understanding of chemotherapy-induced hyperammonemia as drug-induced CPS1 deficiency is suggested. Moreover, we highlight the need for urgent diagnostic and therapeutic strategies addressing a possible secondary urea cycle failure in future patients with hyperammonemia during chemotherapy and stem cell transplantation.
Resumo:
In addition to antigen processing, immunoproteasomes were recently shown to exert functions influencing cytokine production by monocytes and T cells, T-helper cell differentiation, and T-cell survival. Moreover, selective inhibition of the immunoproteasome subunit LMP7 ameliorated symptoms of autoimmune diseases including CD4(+) T-cell mediated EAE. In this study, we show that LMP7 also plays a crucial role in the pathogenesis of lymphocytic choriomeningitis virus (LCMV)-induced meningitis mediated by CTLs. Mice lacking functional LMP7 display delayed and reduced clinical signs of disease accompanied by a strongly decreased inflammatory infiltration into the brain. Interestingly, we found that selective inhibition and genetic deficiency of LMP7 affect the pathogenesis of LCMV-induced meningitis in a distinct manner. Our findings support the important role of LMP7 in inflammatory disorders and suggest immunoproteasome inhibition as a novel strategy against inflammation-induced neuropathology in the CNS.
Resumo:
The paracaspase MALT1 plays an important role in immune receptor-driven signaling pathways leading to NF-κB activation. MALT1 promotes signaling by acting as a scaffold, recruiting downstream signaling proteins, as well as by proteolytic cleavage of multiple substrates. However, the relative contributions of these two different activities to T and B cell function are not well understood. To investigate how MALT1 proteolytic activity contributes to overall immune cell regulation, we generated MALT1 protease-deficient mice (Malt1(PD/PD)) and compared their phenotype with that of MALT1 knockout animals (Malt1(-/-)). Malt1(PD/PD) mice displayed defects in multiple cell types including marginal zone B cells, B1 B cells, IL-10-producing B cells, regulatory T cells, and mature T and B cells. In general, immune defects were more pronounced in Malt1(-/-) animals. Both mouse lines showed abrogated B cell responses upon immunization with T-dependent and T-independent Ags. In vitro, inactivation of MALT1 protease activity caused reduced stimulation-induced T cell proliferation, impaired IL-2 and TNF-α production, as well as defective Th17 differentiation. Consequently, Malt1(PD/PD) mice were protected in a Th17-dependent experimental autoimmune encephalomyelitis model. Surprisingly, Malt1(PD/PD) animals developed a multiorgan inflammatory pathology, characterized by Th1 and Th2/0 responses and enhanced IgG1 and IgE levels, which was delayed by wild-type regulatory T cell reconstitution. We therefore propose that the pathology characterizing Malt1(PD/PD) animals arises from an immune imbalance featuring pathogenic Th1- and Th2/0-skewed effector responses and reduced immunosuppressive compartments. These data uncover a previously unappreciated key function of MALT1 protease activity in immune homeostasis and underline its relevance in human health and disease.