140 resultados para ISOTOPE SYSTEMATICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone research is limited by the methods available for detecting changes in bone metabolism. While dual X-ray absorptiometry is rather insensitive, biochemical markers are subject to significant intra-individual variation. In the study presented here, we evaluated the isotopic labeling of bone using 41Ca, a long-lived radiotracer, as an alternative approach. After successful labeling of the skeleton, changes in the systematics of urinary 41Ca excretion are expected to directly reflect changes in bone Ca metabolism. A minute amount of 41Ca (100 nCi) was administered orally to 22 postmenopausal women. Kinetics of tracer excretion were assessed by monitoring changes in urinary 41Ca/40Ca isotope ratios up to 700 days post-dosing using accelerator mass spectrometry and resonance ionization mass spectrometry. Isotopic labeling of the skeleton was evaluated by two different approaches: (i) urinary 41Ca data were fitted to an established function consisting of an exponential term and a power law term for each individual; (ii) 41Ca data were analyzed by population pharmacokinetic (NONMEM) analysis to identify a compartmental model that describes urinary 41Ca tracer kinetics. A linear three-compartment model with a central compartment and two sequential peripheral compartments was found to best fit the 41Ca data. Fits based on the use of the combined exponential/power law function describing urinary tracer excretion showed substantially higher deviations between predicted and measured values than fits based on the compartmental modeling approach. By establishing the urinary 41Ca excretion pattern using data points up to day 500 and extrapolating these curves up to day 700, it was found that the calculated 41Ca/40Ca isotope ratios in urine were significantly lower than the observed 41Ca/40Ca isotope ratios for both techniques. Compartmental analysis can overcome this limitation. By identifying relative changes in transfer rates between compartments in response to an intervention, inaccuracies in the underlying model cancel out. Changes in tracer distribution between compartments were modeled based on identified kinetic parameters. While changes in bone formation and resorption can, in principle, be assessed by monitoring urinary 41Ca excretion over the first few weeks post-dosing, assessment of an intervention effect is more reliable approximately 150 days post-dosing when excreted tracer originates mainly from bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GH replacement therapy has been shown to improve the dyslipidemic condition in a substantial proportion of patients with adult GH deficiency. The mechanisms are not yet fully elucidated. Low-density lipoprotein (LDL) apolipoprotein B100 (apoB) formation and catabolism are important determinants of plasma cholesterol concentrations. This study examined the effect of GH replacement therapy on LDL apoB metabolism using a stable isotope turnover technique. LDL apoB kinetics was determined in 13 adult patients with GH deficiency before and after 3 months GH/placebo treatment in a randomized, double-blind, placebo-controlled study. LDL apoB (13)C-leucine enrichment was determined by isotope-ratio mass spectrometry. Plasma volume was assessed by standardized radionuclide dilution technique. GH replacement therapy significantly decreased LDL cholesterol, LDL apoB concentrations, and LDL apoB pool size compared with placebo. Compared with baseline, GH replacement therapy resulted in a significant increase in plasma volume and fractional catabolic rate, whereas LDL formation rate remained unchanged. LDL lipid content did not significantly change after GH and placebo. This study suggests that short-term GH replacement therapy decreases the LDL apoB pool by increasing removal of LDL particles without changing LDL composition or LDL apoB production rate. In addition, it is possible that the beneficial effects of GH on the cardiovascular system contribute to these findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with adult GH deficiency are often dyslipidemic and may have an increased risk of cardiovascular disease. The secretion and clearance of very low density lipoprotein apolipoprotein B 100 (VLDL apoB) are important determinants of plasma lipid concentrations. This study examined the effect of GH replacement therapy on VLDL apoB metabolism using a stable isotope turnover technique. VLDL apoB kinetics were determined in 14 adult patients with GH deficiency before and after 3 months GH or placebo treatment in a randomized double blind, placebo-controlled study using a primed constant [1-(13)C]leucine infusion. VLDL apoB enrichment was determined by gas chromatography-mass spectrometry. GH replacement therapy increased plasma insulin-like growth factor I concentrations 2.9 +/- 0.5-fold (P < 0.001), fasting insulin concentrations 1.8 +/- 0.6-fold (P < 0.04), and hemoglobin A1C from 5.0 +/- 0.2% to 5.3 +/- 0.2% (mean +/- SEM; P < 0.001). It decreased fat mass by 3.4 +/- 1.3 kg (P < 0.05) and increased lean body mass by 3.5 +/- 0.8 kg (P < 0.01). The total cholesterol concentration (P < 0.02), the low density lipoprotein cholesterol concentration (P < 0.02), and the VLDL cholesterol/VLDL apoB ratio (P < 0.005) decreased. GH therapy did not significantly change the VLDL apoB pool size, but increased the VLDL apoB secretion rate from 9.2 +/- 2.0 to 25.9 +/- 10.3 mg/kg x day (P < 0.01) and the MCR from 11.5 +/- 2.7 to 20.3 +/- 3.2 mL/min (P < 0.03). No significant changes were observed in the placebo group. This study suggests that GH replacement therapy improves lipid profile by increasing the removal of VLDL apoB. Although GH therapy stimulates VLDL apoB secretion, this is offset by the increase in the VLDL apoB clearance rate, which we postulate is due to its effects in up-regulating low density lipoprotein receptors and modifying VLDL composition.