65 resultados para INDUCED CONFORMATIONAL-CHANGES


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction In several studies, we found that during guided rhythmic speech exercises, a decrease in cerebral hemodynamics and oxygenation occurred as the result of a decrease in the partial pressure of carbon dioxide in the arterial blood (PaCO2) during speaking. To further explore the effect of PaCO2 variations on cerebral hemodynamics and oxygenation, the aim of the present study was to investigate the impact of spoken, inner and heard speech tasks on these parameters. Material and Methods Speech tasks included recitation or inner recitation or listening to hexameter, alliteration, prose, or performing mental arithmetic. The following physiological parameters were measured: tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin, deoxyhemoglobin, total hemoglobin (over the left and right anterior prefrontal cortex, using an ISS OxiplexTS frequency domain near-infrared spectrometer) and end-tidal CO2 (PETCO2; using Nellcor N1000 and Datex NORMOCAP capnographs). Statistical analysis was applied to the differences between baseline, 2 tasks, and 3 post-baseline periods. Data of 3 studies with 24, 7 and 29 healthy subjects, respectively, were combined, and linear regression analyses were calculated. Results Linear regression analyses revealed significant relations between changes in oxyhemoglobin, deoxyhemoglobin, total hemoglobin or StO2 and the participants’ age, the baseline PETCO2 or certain speech tasks. While hexameter verses affected changes during the tasks, alliteration verses only affected changes during the recovery phase. Discussion and Conclusion The observed effects in hemodynamics and oxygenation indicate a combination of neurovascular coupling (increased neuronal activity leading to an increase in the cerebral metabolic rate of oxygen resulting in an increase in cerebral flood flow/volume) and CO2 reactivity (increased breathing during speech tasks causing a decrease in PaCO2 leading to vasoconstriction and decrease in cerebral blood flow). The neurovascular coupling characteristics are task-dependent. References Scholkmann F, Gerber U, Wolf M, Wolf U. End-tidal CO2: An important parameter for a correct interpretation in functional brain studies using speech tasks. Neuroimage 2013;66:71-79. Scholkmann F, Wolf M, Wolf U. The effect of inner speech on arterial CO2, cerebral hemodynamics and oxygenation – A functional NIRS study. Adv Exp Med Biol 2013;789:81-87.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims To explore the impact of the functional severity of coronary artery stenosis on changes in myocardial oxygenation during pharmacological vasodilation, using oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) imaging and invasive fractional flow reserve (FFR). An FFR is considered a standard of reference for assessing haemodynamic relevance of coronary artery stenosis; yet, the relationship of FFR to changes in myocardial oxygenation during vasodilator stress and thus to an objective marker for ischaemia on the tissue level is not well understood. Methods and results We prospectively recruited 64 patients with suspected/known coronary artery disease undergoing invasive angiography. The FFR was performed in intermediate coronary artery stenosis. OS-CMR images were acquired using a T2*-sensitive sequence before and after adenosine-induced vasodilation, with myocardial segments matched to angiography. Very strict image quality criteria were defined to ensure the validity of results. The FFR was performed in 37 patients. Because of the strict image quality criteria, 41% of segments had to be excluded, leaving 29/64 patients for the blinded OS-CMR analysis. Coronary territories with an associated FFR of <0.80 showed a lack of increase in myocardial oxygenation [mean signal intensity (ΔSI) −0.49%; 95% confidence interval (CI) −3.78 to 2.78 vs. +7.30%; 95% CI 4.08 to 10.64; P < 0.001]. An FFR of <0.54 best predicted a complete lack of a vasodilator-induced oxygenation increase (sensitivity 71% and specificity 75%). An OS-CMR ΔSI <4.78% identified an FFR of <0.8 with a sensitivity of 86% and specificity of 92%. Conclusion An FFR of <0.80 is associated with a lack of an adenosine-inducible increase in oxygenation of the dependent coronary territory, while a complete lack of such an increase was best predicted by an FFR of <0.54. Further studies are warranted to identify clinically meaningful cut-off values for FFR measurements and to assess the utility of OS-CMR as an alternative clinical tool for assessing the functional relevance of coronary artery stenosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Herbivore-damaged plants release a blend of volatile organic compounds (VOCs) that differs from undamaged plants. These induced changes are known to attract the natural enemies of the herbivores and therefore are expected to be important determinants of the effectiveness of biological control in agriculture. One way of boosting this phenomenon is the application of plant strengtheners, which has been shown to enhance parasitoid attraction in maize. It is unclear whether this is also the case for other important crops. RESULTS The plant strengtheners BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and laminarin were applied to cotton plants, and the effects on volatile releases and the attraction of three hymenopteran parasitoids, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, were studied. After treated and untreated plants were induced by real or simulated caterpillar feeding, it was found that BTH treatment increased the attraction of the parasitoids, whereas laminarin had no significant effect. BTH treatment selectively increased the release of two homoterpenes and reduced the emission of indole, the latter of which had been shown to interfere with parasitoid attraction in earlier studies. Canonical variate analyses of the data show that the parasitoid responses were dependent on the quality rather than the quantity of volatile emission in this tritrophic interaction. CONCLUSION Overall, these results strengthen the emerging paradigm that induction of plant defences with chemical elicitors such as BTH could provide a sustainable and environmentally friendly strategy for biological control of pests by enhancing the attractiveness of cultivated plants to natural enemies of insect herbivores. © 2014 Society of Chemical Industry

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Our aim was to distinguish between spinal and supraspinal mechanisms in the intact nervous system by comparing homosegmental and heterosegmental effects of electroacupuncture (EA) and manual acupuncture (MA) on sensory perception in healthy volunteers by means of quantitative sensory testing. Seventy-two healthy volunteers were randomly assigned to receive either MA or EA at SP 6, SP 9, GB 39, and ST 36 at the left leg or relaxed for 30 minutes (control group [CG]). Blinded examiners assessed 13 sensory modalities (thermal and mechanical detection and pain thresholds) at the upper arms and lower legs before and after intervention by means of a standardized quantitative sensory testing battery. Change scores of all 13 sensory thresholds were compared between groups. The main outcome measure was the change score of the pressure pain threshold (PPT). There were no baseline differences between groups. Pressure pain threshold change scores at the lower left leg, in the same segment as the needling site, differed significantly (P = 0.008) between the EA (median: 103.01 kPa) and CG groups (median: 0.00 kPa) but not between the MA (median: 0.00 kPa) and CG groups. No further significant change score differences were found between one of the acupuncture groups and the CG. The PPT can be changed by EA. The PPT increase was confined to the segment of needling, which indicates that it is mainly mediated by segmental inhibition in the spinal cord. This underscores the importance of segmental needling and electrical stimulation in clinical practice.