72 resultados para IMAGERY REHEARSAL
Resumo:
A growing number of studies in humans demonstrate the involvement of vestibular information in tasks that are seemingly remote from well-known functions such as space constancy or postural control. In this review article we point out three emerging streams of research highlighting the importance of vestibular input: (1) Spatial Cognition: Modulation of vestibular signals can induce specific changes in spatial cognitive tasks like mental imagery and the processing of numbers. This has been shown in studies manipulating body orientation (changing the input from the otoliths), body rotation (changing the input from the semicircular canals), in clinical findings with vestibular patients, and in studies carried out in microgravity. There is also an effect in the reverse direction; top-down processes can affect perception of vestibular stimuli. (2) Body Representation: Numerous studies demonstrate that vestibular stimulation changes the representation of body parts, and sensitivity to tactile input or pain. Thus, the vestibular system plays an integral role in multisensory coordination of body representation. (3) Affective Processes and Disorders: Studies in psychiatric patients and patients with a vestibular disorder report a high comorbidity of vestibular dysfunctions and psychiatric symptoms. Recent studies investigated the beneficial effect of vestibular stimulation on psychiatric disorders, and how vestibular input can change mood and affect. These three emerging streams of research in vestibular science are—at least in part—associated with different neuronal core mechanisms. Spatial transformations draw on parietal areas, body representation is associated with somatosensory areas, and affective processes involve insular and cingulate cortices, all of which receive vestibular input. Even though a wide range of different vestibular cortical projection areas has been ascertained, their functionality still is scarcely understood.
Resumo:
The treatment of neuropathic pain challenges not only doctors but also hand therapists, since a majority of patients don't experience a significant pain relief despite systemic pain treatment. Early diagnosis of neuropathic pain and a therapeutic concept is crucial to meet the individual needs of the patient. The complexity of a pain syndrome calls for a multidisciplinary approach using patient education, pharmacological and non-pharmacological therapies, such as graded motor imagery or somatosensory rehabilitation, behavioral therapy and physical measures. The evidence of the above mentioned therapies with regards to neuropathic pain is not yet completely established. Possible reasons are the lack of complete understanding of the pain causing mechanisms and the fact of treating the symptoms rather than the cause.
Resumo:
Brain electric mechanisms of temporary, functional binding between brain regions are studied using computation of scalp EEG coherence and phase locking, sensitive to time differences of few milliseconds. However, such results if computed from scalp data are ambiguous since electric sources are spatially oriented. Non-ambiguous results can be obtained using calculated time series of strength of intracerebral model sources. This is illustrated applying LORETA modeling to EEG during resting and meditation. During meditation, time series of LORETA model sources revealed a tendency to decreased left-right intracerebral coherence in the delta band, and to increased anterior-posterior intracerebral coherence in the theta band. An alternate conceptualization of functional binding is based on the observation that brain electric activity is discontinuous, i.e., that it occurs in chunks of up to about 100 ms duration that are detectable as quasi-stable scalp field configurations of brain electric activity, called microstates. Their functional significance is illustrated in spontaneous and event-related paradigms, where microstates associated with imagery- versus abstract-type mentation, or while reading positive versus negative emotion words showed clearly different regions of cortical activation in LORETA tomography. These data support the concept that complete brain functions of higher order such as a momentary thought might be incorporated in temporal chunks of processing in the range of tens to about 100 ms as quasi-stable brain states; during these time windows, subprocesses would be accepted as members of the ongoing chunk of processing.
Resumo:
We describe a technique for interactive rendering of diffraction effects produced by biological nanostructures, such as snake skin surface gratings. Our approach uses imagery from atomic force microscopy that accurately captures the geometry of the nanostructures responsible for structural colouration, that is, colouration due to wave interference, in a variety of animals. We develop a rendering technique that constructs bidirectional reflection distribution functions (BRDFs) directly from the measured data and leverages pre-computation to achieve interactive performance. We demonstrate results of our approach using various shapes of the surface grating nanostructures. Finally, we evaluate the accuracy of our pre-computation-based technique and compare to a reference BRDF construction technique.
Resumo:
Recent studies provide promising methodological advances in the use of pupillometry as on-line measurement of cognitive processes and show that visual attention allocation, mind-wandering, mental imagery, and even rhyme expectations can influence the size of the human pupil.
Resumo:
Motor practice in lucid dreams is a form of mental rehearsal where the dreamer can con-sciously rehearse motor skills in the dream state while being physically asleep (Erlacher, Stumbrys & Schredl, 2011). A previous pilot study showed that practice in lucid dreams can improve subsequent performance (Erlacher & Schredl, 2010). This study aimed to replicated those findings with a different (serial reaction) task (finger-tapping; e.g. Walker et al., 2002) and compare the effectiveness of lucid dream practice not only to physical but also to mental practice in wakefulness.
Resumo:
Land degradation as well as land conservation maps at a (sub-) national scale are critical for pro-ject planning for sustainable land management. It has long been recognized that online accessible and low-cost raster data sets (e.g. Landsat imagery, SRTM-DEM’s) provide a readily available basis for land resource assessments for developing countries. However, choice of spatial, tempo-ral and spectral resolution of such data is often limited. Furthermore, while local expert knowl-edge on land degradation processes is abundant, difficulties are often encountered when linking existing knowledge with modern approaches including GIS and RS. The aim of this study was to develop an easily applicable, standardized workflow for preliminary spatial assessments of land degradation and conservation, which also allows the integration of existing expert knowledge. The core of the developed method consists of a workflow for rule-based land resource assess-ment. In a systematic way, this workflow leads from predefined land degradation and conserva-tion classes to field indicators, to suitable spatial proxy data, and finally to a set of rules for clas-sification of spatial datasets. Pre-conditions are used to narrow the area of interest. Decision tree models are used for integrating the different rules. It can be concluded that the workflow presented assists experts from different disciplines in col-laboration GIS/RS specialists in establishing a preliminary model for assessing land degradation and conservation in a spatially explicit manner. The workflow provides support when linking field indicators and spatial datasets, and when determining field indicators for groundtruthing.
Resumo:
The Swiss Swiss Consultant Trust Fund (CTF) support covered the period from July to December 2007 and comprised four main tasks: (1) Analysis of historic land degradation trends in the four watersheds of Zerafshan, Surkhob, Toirsu, and Vanj; (2) Translation of standard CDE GIS training materials into Russian and Tajik to enable local government staff and other specialists to use geospatial data and tools; (3) Demonstration of geospatial tools that show land degradation trends associated with land use and vegetative cover data in the project areas, (4) Preliminary training of government staff in using appropriate data, including existing information, global datasets, inexpensive satellite imagery and other datasets and webbased visualization tools like spatial data viewers, etc. The project allowed building of local awareness of, and skills in, up-to-date, inexpensive, easy-to-use GIS technologies, data sources, and applications relevant to natural resource management and especially to sustainable land management. In addition to supporting the implementation of the World Bank technical assistance activity to build capacity in the use of geospatial tools for natural resource management, the Swiss CTF support also aimed at complementing the Bank supervision work on the ongoing Community Agriculture and Watershed Management Project (CAWMP).
Resumo:
The article investigates the intriguing interplay of digital comics and live-action elements in a detailed performance analysis of TeZukA (2011) by choreographer Sidi Larbi Cherkaoui. This dance theatre production enacts the life story of Osamu Tezuka and some of his famous manga characters, interweaving performers and musicians with large-scale projections of the mangaka’s digitised comics. During the show, the dancers perform different ‘readings’ of the projected manga imagery: e.g. they swipe panels as if using portable touchscreen displays, move synchronously to animated speed lines, and create the illusion of being drawn into the stories depicted on the screen. The main argument is that TeZukA makes visible, demonstrates and reflects upon different ways of delivering, reading and interacting with digital comics. In order to verify this argument, the paper uses ideas developed in comics and theatre studies to draw more specifically on the use of digital comics in this particular performance.
Resumo:
An efficient and reliable automated model that can map physical Soil and Water Conservation (SWC) structures on cultivated land was developed using very high spatial resolution imagery obtained from Google Earth and ArcGIS, ERDAS IMAGINE, and SDC Morphology Toolbox for MATLAB and statistical techniques. The model was developed using the following procedures: (1) a high-pass spatial filter algorithm was applied to detect linear features, (2) morphological processing was used to remove unwanted linear features, (3) the raster format was vectorized, (4) the vectorized linear features were split per hectare (ha) and each line was then classified according to its compass direction, and (5) the sum of all vector lengths per class of direction per ha was calculated. Finally, the direction class with the greatest length was selected from each ha to predict the physical SWC structures. The model was calibrated and validated on the Ethiopian Highlands. The model correctly mapped 80% of the existing structures. The developed model was then tested at different sites with different topography. The results show that the developed model is feasible for automated mapping of physical SWC structures. Therefore, the model is useful for predicting and mapping physical SWC structures areas across diverse areas.
Resumo:
Rhetoric and Organizational Success: Imagery, Creativity and Innovation