107 resultados para Hydrodynamic circulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frequency of large-scale heavy precipitation events in the European Alps is expected to undergo substantial changes with current climate change. Hence, knowledge about the past natural variability of floods caused by heavy precipitation constitutes important input for climate projections. We present a comprehensive Holocene (10,000 years) reconstruction of the flood frequency in the Central European Alps combining 15 lacustrine sediment records. These records provide an extensive catalog of flood deposits, which were generated by flood-induced underflows delivering terrestrial material to the lake floors. The multi-archive approach allows suppressing local weather patterns, such as thunderstorms, from the obtained climate signal. We reconstructed mainly late spring to fall events since ice cover and precipitation in form of snow in winter at high-altitude study sites do inhibit the generation of flood layers. We found that flood frequency was higher during cool periods, coinciding with lows in solar activity. In addition, flood occurrence shows periodicities that are also observed in reconstructions of solar activity from C-14 and Be-10 records (2500-3000, 900-1200, as well as of about 710, 500, 350, 208 (Suess cycle), 150, 104 and 87 (Gleissberg cycle) years). As atmospheric mechanism, we propose an expansion/shrinking of the Hadley cell with increasing/decreasing air temperature, causing dry/wet conditions in Central Europe during phases of high/low solar activity. Furthermore, differences between the flood patterns from the Northern Alps and the Southern Alps indicate changes in North Atlantic circulation. Enhanced flood occurrence in the South compared to the North suggests a pronounced southward position of the Westerlies and/or blocking over the northern North Atlantic, hence resembling a negative NAO state (most distinct from 4.2 to 2.4 kyr BP and during the Little Ice Age). South-Alpine flood activity therefore provides a qualitative record of variations in a paleo-NAO pattern during the Holocene. Additionally, increased South Alpine flood activity contrasts to low precipitation in tropical Central America (Cariaco Basin) on the Holocene and centennial time scale. This observation is consistent with a Holocene southward migration of the Atlantic circulation system, and hence of the ITCZ, driven by decreasing summer insolation in the Northern hemisphere, as well as with shorter-term fluctuations probably driven by solar activity. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we document glacial deposits and reconstruct the glacial history in the Karagöl valley system in the eastern Uludağ in northwestern Turkey based on 42 cosmogenic 10Be exposure ages from boulders and bedrock. Our results suggest the Last Glacial Maximum (LGM) advance prior to 20.4 ± 1.2 ka and at least three re-advances until 18.6 ± 1.2 ka during the global LGM within Marine Isotope Stage-2. In addition, two older advances of unknown age are geomorphologically well constrained, but not dated due to the absence of suitable boulders. Glaciers advanced again two times during the Lateglacial. The older is exposure dated to not later than 15.9 ± 1.1 ka and the younger is attributed to the Younger Dryas (YD) based on field evidence. The timing of the glaciations in the Karagöl valley correlates well with documented archives in the Anatolian and Mediterranean mountains and the Alps. These glacier fluctuations may be explained by the change in the atmospheric circulation pattern during the different phases of North Atlantic Oscillation (NAO) winter indices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric circulation modes are important concepts in understanding the variability of atmospheric dynamics. Assuming their spatial patterns to be fixed, such modes are often described by simple indices from rather short observational data sets. The increasing length of reanalysis products allows these concepts and assumptions to be scrutinised. Here we investigate the stability of spatial patterns of Northern Hemisphere teleconnections by using the Twentieth Century Reanalysis as well as several control and transient millennium-scale simulations with coupled models. The observed and simulated centre of action of the two major teleconnection patterns, the North Atlantic Oscillation (NAO) and to some extent the Pacific North American (PNA), are not stable in time. The currently observed dipole pattern of the NAO, its centre of action over Iceland and the Azores, split into a north–south dipole pattern in the western Atlantic with a wave train pattern in the eastern part, connecting the British Isles with West Greenland and the eastern Mediterranean during the period 1940–1969 AD. The PNA centres of action over Canada are shifted southwards and over Florida into the Gulf of Mexico during the period 1915–1944 AD. The analysis further shows that shifts in the centres of action of either teleconnection pattern are not related to changes in the external forcing applied in transient simulations of the last millennium. Such shifts in their centres of action are accompanied by changes in the relation of local precipitation and temperature with the overlying atmospheric mode. These findings further undermine the assumption of stationarity between local climate/proxy variability and large-scale dynamics inherent when using proxy-based reconstructions of atmospheric modes, and call for a more robust understanding of atmospheric variability on decadal timescales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Atlantic meridional overturning circulation affects the latitudinal distribution of heat, and is a key component of the climate system. Proxy reconstructions, based on sedimentary Pa-231/Th-230 ratios and the difference between surface-and deep-water radiocarbon ages, indicate that during the last glacial period, the overturning circulation was reduced during millennial-scale periods of cooling(1-5). However, much debate exists over the robustness of these proxies(6-8). Here e combine proxy reconstructions of sea surface and air temperatures and a global climate model to quantitatively estimate changes in the strength of the Atlantic meridional overturning circulation during the last glacial period. We find that, relative to the Last Glacial Maximum, the overturning circulation was reduced by approximately 14 Sv during the cold Heinrich event 1. During the Younger Dryas cold event, the overturning circulation was reduced by approximately 12 Sv, relative to the preceding warm interval. These changes are consistent with qualitative estimates of the overturning circulation from sedimentary Pa-231/Th-230 ratios. In addition, we find that the strength of the overturning circulation during the Last Glacial Maximum and the Holocene epoch are indistinguishable within the uncertainty of the reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in Greenland accumulation and the stability in the relationship between accumulation variability and large-scale circulation are assessed by performing time-slice simulations for the present day, the preindustrial era, the early Holocene, and the Last Glacial Maximum (LGM) with a comprehensive climate model. The stability issue is an important prerequisite for reconstructions of Northern Hemisphere atmospheric circulation variability based on accumulation or precipitation proxy records from Greenland ice cores. The analysis reveals that the relationship between accumulation variability and large-scale circulation undergoes a significant seasonal cycle. As the contributions of the individual seasons to the annual signal change, annual mean accumulation variability is not necessarily related to the same atmospheric circulation patterns during the different climate states. Interestingly, within a season, local Greenland accumulation variability is indeed linked to a consistent circulation pattern, which is observed for all studied climate periods, even for the LGM. Hence, it would be possible to deduce a reliable reconstruction of seasonal atmospheric variability (e.g., for North Atlantic winters) if an accumulation or precipitation proxy were available that resolves single seasons. We further show that the simulated impacts of orbital forcing and changes in the ice sheet topography on Greenland accumulation exhibit strong spatial differences, emphasizing that accumulation records from different ice core sites regarding both interannual and long-term (centennial to millennial) variability cannot be expected to look alike since they include a distinct local signature. The only uniform signal to external forcing is the strong decrease in Greenland accumulation during glacial (LGM) conditions and an increase associated with the recent rise in greenhouse gas concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the complexity of active medical implants increases, the task of embedding a life-long power supply at the time of implantation becomes more challenging. A periodic renewal of the energy source is often required. Human energy harvesting is, therefore, seen as a possible remedy. In this paper, we present a novel idea to harvest energy from the pressure-driven deformation of an artery by the principle of magneto-hydrodynamics. The generator relies on a highly electrically conductive fluid accelerated perpendicularly to a magnetic field by means of an efficient lever arm mechanism. An artery with 10 mm inner diameter is chosen as a potential implantation site and its ability to drive the generator is established. Three analytical models are proposed to investigate the relevant design parameters and to determine the existence of an optimal configuration. The predicted output power reaches 65 μW according to the first two models and 135 μW according to the third model. It is found that the generator, designed as a circular structure encompassing the artery, should not exceed a total volume of 3 cm3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Stent retrievers have become an important tool for the treatment of acute ischemic stroke. The aim of this study was to analyze outcome and complications in a large cohort of patients with stroke treated with the Solitaire stent retriever. The study also included patients who did not meet standard inclusion criteria for endovascular treatment: low or high baseline National Institutes of Health Stroke Scale score, ≥80 years of age, extensive ischemic signs in middle cerebral artery territory, and time from symptom onset to endovascular intervention>8 hours. METHODS Consecutive patients with acute anterior circulation stroke treated with the Solitaire FR were analyzed. Data on characteristics of endovascular interventions, complications, and clinical outcome were collected prospectively. Patients who met standard inclusion criteria were compared with those who did not. RESULTS A total of 227 patients were included. Mean age was 68.2±14.7 years, and median National Institutes of Health Stroke Scale score on admission was 16 (range, 2-36). Reperfusion was successful (thrombolysis in cerebral infarction, 2b-3) in 70.9%. Outcome was favorable (modified Rankin Scale, 0-2) in 57.7% of patients who met standard inclusion criteria and 30.3% of those who did not. The rates for symptomatic intracranial hemorrhage were 3.7% and 13.1%, for death 11.4% and 33.8%, and for symptomatic intraprocedural complications 2.5% and 4.8%, respectively. CONCLUSIONS Patients<80 years of age, without extensive pretreatment ischemic signs, and baseline National Institutes of Health Stroke Scale score≤30 had high rates of favorable outcome and low periprocedural complication rates after Solitaire thrombectomy. Successful reperfusion was also common in patients not fulfilling standard inclusion criteria, but worse clinical outcomes warrant further research with a special focus on optimal patient selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Replacement intervals of implantable medical devices are commonly dictated by battery life. Therefore, intracorporeal energy harvesting has the potential to reduce the number of surgical interventions by extending the life cycle of active devices. Given the accumulated experience with intravascular devices such as stents, heart valves, and cardiac assist devices, the idea to harvest a small fraction of the hydraulic energy available in the cardiovascular circulation is revisited. The aim of this article is to explore the technical feasibility of harvesting 1 mW electric power using a miniature hydrodynamic turbine powered by about 1% of the cardiac output flow in a peripheral artery. To this end, numerical modelling of the fluid mechanics and experimental verification of the overall performance of a 1:1 scale friction turbine are performed in vitro. The numerical flow model is validated for a range of turbine configurations and flow conditions (up to 250 mL/min) in terms of hydromechanic efficiency; up to 15% could be achieved with the nonoptimized configurations of the study. Although this article does not entail the clinical feasibility of intravascular turbines in terms of hemocompatibility and impact on the circulatory system, the numerical model does provide first estimates of the mechanical shear forces relevant to blood trauma and platelet activation. It is concluded that the time-integrated shear stress exposure is significantly lower than in cardiac assist devices due to lower flow velocities and predominantly laminar flow.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE The DRAGON score predicts functional outcome in the hyperacute phase of intravenous thrombolysis treatment of ischemic stroke patients. We aimed to validate the score in a large multicenter cohort in anterior and posterior circulation. METHODS Prospectively collected data of consecutive ischemic stroke patients who received intravenous thrombolysis in 12 stroke centers were merged (n=5471). We excluded patients lacking data necessary to calculate the score and patients with missing 3-month modified Rankin scale scores. The final cohort comprised 4519 eligible patients. We assessed the performance of the DRAGON score with area under the receiver operating characteristic curve in the whole cohort for both good (modified Rankin scale score, 0-2) and miserable (modified Rankin scale score, 5-6) outcomes. RESULTS Area under the receiver operating characteristic curve was 0.84 (0.82-0.85) for miserable outcome and 0.82 (0.80-0.83) for good outcome. Proportions of patients with good outcome were 96%, 93%, 78%, and 0% for 0 to 1, 2, 3, and 8 to 10 score points, respectively. Proportions of patients with miserable outcome were 0%, 2%, 4%, 89%, and 97% for 0 to 1, 2, 3, 8, and 9 to 10 points, respectively. When tested separately for anterior and posterior circulation, there was no difference in performance (P=0.55); areas under the receiver operating characteristic curve were 0.84 (0.83-0.86) and 0.82 (0.78-0.87), respectively. No sex-related difference in performance was observed (P=0.25). CONCLUSIONS The DRAGON score showed very good performance in the large merged cohort in both anterior and posterior circulation strokes. The DRAGON score provides rapid estimation of patient prognosis and supports clinical decision-making in the hyperacute phase of stroke care (eg, when invasive add-on strategies are considered).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coronary collateral circulation is an alternative source of blood supply to a myocardial area jeopardized by the failure of the stenotic or occluded vessel to provide enough blood flow to this region. Until recently, only qualitative or semiqualitative methods have been available for the assessment of the coronary collateral circulation in humans, such as the patient's history of walk-through angina pectoris, the registration of intracoronary ECG signs for myocardial ischaemia or angina pectoris during coronary occlusion, or coronary angiographic classification (score 0-3) of collaterals. Studies of coronary wedge pressure measurements distal of a balloon-occluded coronary artery and the recent advent of ultrathin pressure and Doppler angioplasty guidewires have made it possible to obtain pressure or flow velocity data in remote vascular areas and, thus, to calculate functional variables for coronary collateral flow. Those coronary occlusive pressure- and flow velocity-derived parameters express collateral flow as a fraction of antegrade coronary flow during vessel patency of the collateral-receiving vessel. They are both interchangeable, and they have been validated in comparison to 'traditional' methods and against each other. The possibility of accurately measuring coronary collateral flow indices in humans undergoing coronary balloon angioplasty opens areas of investigation of the pathogenesis, pathophysiology and therapeutic promotion of the collateral circulation previously reserved for exclusively experimental studies. The purpose of this article is to review several clinically available methods for the functional characterization of the coronary collateral circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the respective role of variations in subpolar deep water formation and Nordic Seas overflows for the decadal to multidecadal variability of the Atlantic meridional overturning circulation (AMOC). This is partly done by analysing long (order of 1000 years) control simulations with five coupled climate models. For all models, the maximum influence of variations in subpolar deep water formation is found at about 45° N, while the maximum influence of variations in Nordic Seas overflows is rather found at 55 to 60° N. Regarding the two overflow branches, the influence of variations in the Denmark Strait overflow is, for all models, substantially larger than that of variations in the overflow across the Iceland–Scotland Ridge. The latter might, however, be underestimated, as the models in general do not realistically simulate the flow path of the Iceland–Scotland overflow water south of the Iceland–Scotland Ridge. The influence of variations in subpolar deep water formation is, on multimodel average, larger than that of variations in the Denmark Strait overflow. This is true both at 45° N, where the maximum standard deviation of decadal to multidecadal AMOC variability is located for all but one model, and at the more classical latitude of 30° N. At 30° N, variations in subpolar deep water formation and Denmark Strait overflow explain, on multimodel average, about half and one-third respectively of the decadal to multidecadal AMOC variance. Apart from analysing multimodel control simulations, we have performed sensitivity experiments with one of the models, in which we suppress the variability of either subpolar deep water formation or Nordic Seas overflows. The sensitivity experiments indicate that variations in subpolar deep water formation and Nordic Seas overflows are not completely independent. We further conclude from these experiments that the decadal to multidecadal AMOC variability north of about 50° N is mainly related to variations in Nordic Seas overflows. At 45° N and south of this latitude, variations in both subpolar deep water formation and Nordic Seas overflows contribute to the AMOC variability, with neither of the processes being very dominant compared to the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study provides a continuous lateglacial and Holocene record of diatom silica oxygen isotope changes (delta O-18(DIAT)) in a subalpine lake sediment sequence obtained from the Retezat Mts (Taul dintre Brazi, 1740 m a.s.l.). This through-flow, shallow, high-altitude lake with a surface area of only 0.4 ha has short water residence time and is predominantly fed by snowmelt and rainwater. Its delta O-18(DIAT) record principally reflects the oxygen isotope composition of the winter and spring precipitation, as diatom blooms occur mainly in the spring and early summer. Hence, changes in delta O-18(DIAT) are interpreted as seasonal scale changes: in the amount of winter precipitation. Low oxygen isotope values (27-28.5 parts per thousand) occurred during the lateglacial until 12,300 cal BP, followed by a sharp increase thereafter. In the Holocene delta O-18(DIAT) values ranged from 29 to 31 parts per thousand until 3200 cal BP, followed by generally lower values during the late Holocene (27-30 parts per thousand). Short-term decreases in the isotopic values were found between 10,140-9570, 9000-8500, 7800-7300, 6300-5800, 5500-5000 and at 8015, 4400, 4000 cal BP. After 3200 cal BP a decreasing trend was visible with the lowest values between 3100-2500 and after 2100 cal BP The general trend in the record suggests that contribution of winter precipitation was generally lower between 11,680 and 3200 cal BP, followed by increased contribution during the last millennia. The late Holocene decrease in delta O-18(DIAT) shows good agreement with the speleothem delta O-18, lake level and testate amoebae records from the Carpathian Mountains that also display gradual delta O-18 decrease and lake level/mire water table level rise after 3200 cal BR Strong positive correlation with North Atlantic circulation and solar activity proxies, such as the Austrian and Hungarian speleothem records, furthermore suggested that short-term increases in the isotopic ratios in the early and mid Holocene are likely connectable to high solar activity phases and high frequency of positive North Atlantic Oscillation indexes that may have resulted in decreased winter precipitation in this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.