95 resultados para HERBACEOUS VEGETATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution pollen analyses made on the same samples on which the ratios of oxygen isotopes were measured that provided the time scale and a temperature proxy after correlation to NorthGRIP. (1) A primary succession: The vegetation responded to the rapid rise of temperatures around 14,685 yr BP, with a primary succession on a decadal to centennial time scale. The succession between ca 15,600 and 13,000 yr BP included: (1.1.) The replacement of shrub-tundra by woodland of Juniperus and tree birch (around 14,665 yr BP) (1.2.) The response of Juniperus pollen to the shift in oxygen isotopes in less than 20 yr, (1.3.) A sequence of population increases of Hippophaë rhamnoides (ca 14,600 yr BP), Salix spp. (ca 14,600 yr BP), Betula trees (ca.14,480 yr BP), Populus cf. tremula (ca. 14,300 yr BP), and Pinus cf. sylvestris (ca. 13,830 yr BP). (2) Biological processes: Plants responded to the rapid increase of summer temperatures on all organisational levels: (2.1) Individuals may have produced more pollen (e.g. Juniperus); (2.2) Populations increased or decreased (e.g. Juniperus, Betula, later Pinus), and (2.3) Populations changed their biogeographical range and may show migrational lags. (2.4) Plant communities changed in their composition because the species pools changed through immigration and (local) extinction. Some plant communities may have been without modern analogue.These mechanisms require increasing amounts of time. (2.5) Processes on the level of ecosystems, with species interactions, may involve various time scales. Besides competition and facilitation, nitrogen fixation is discussed. (3) The minor fluctuations of temperature during the Late-Glacial Interstadial, which are recorded in δ18O, resulted in only very minor changes in pollen during the Aegelsee Oscillation (Older Dryas biozone, GI-1d) and the Gerzensee Oscillation (GI-1b). (4) Biodiversity: The afforestation at the onset of Bølling coincided with a gradual increase of taxonomic diversity up to the time of the major Pinus expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecology and conservation require reliable data on the occurrence of animals and plants. A major source of bias is imperfect detection, which, however, can be corrected for by estimation of detectability. In traditional occupancy models, this requires repeat or multi-observer surveys. Recently, time-to-detection models have been developed as a cost-effective alternative, which requires no repeat surveys and hence costs could be halved. We compared the efficiency and reliability of time-to-detection and traditional occupancy models under varying survey effort. Two observers independently searched for 17 plant species in 44100m(2) Swiss grassland quadrats and recorded the time-to-detection for each species, enabling detectability to be estimated with both time-to-detection and traditional occupancy models. In addition, we gauged the relative influence on detectability of species, observer, plant height and two measures of abundance (cover and frequency). Estimates of detectability and occupancy under both models were very similar. Rare species were more likely to be overlooked; detectability was strongly affected by abundance. As a measure of abundance, frequency outperformed cover in its predictive power. The two observers differed significantly in their detection ability. Time-to-detection models were as accurate as traditional occupancy models, but their data easier to obtain; thus they provide a cost-effective alternative to traditional occupancy models for detection-corrected estimation of occurrence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1 degrees x1 degrees spatial scale with the objective of producing vegetation descriptions suitable for climate modelling. The REVEALS model was applied on 636 pollen records from lakes and bogs to reconstruct the past cover of 25 plant taxa grouped into 10 plant-functional types and three land-cover types evergreen trees, summer-green (deciduous) trees, and open land]. The model corrects for some of the biases in pollen percentages by using pollen productivity estimates and fall speeds of pollen, and by applying simple but robust models of pollen dispersal and deposition. The emerging patterns of tree migration and deforestation between 6k bp and modern time in the REVEALS estimates agree with our general understanding of the vegetation history of Europe based on pollen percentages. However, the degree of anthropogenic deforestation (i.e. cover of cultivated and grazing land) at 3k, 0.5k, and 0.2k bp is significantly higher than deduced from pollen percentages. This is also the case at 6k in some parts of Europe, in particular Britain and Ireland. Furthermore, the relationship between summer-green and evergreen trees, and between individual tree taxa, differs significantly when expressed as pollen percentages or as REVEALS estimates of tree cover. For instance, when Pinus is dominant over Picea as pollen percentages, Picea is dominant over Pinus as REVEALS estimates. These differences play a major role in the reconstruction of European landscapes and for the study of land cover-climate interactions, biodiversity and human resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protection and sustainable management of forest carbon stocks, particularly in the tropics, is a key factor in the mitigation of global change effects. However, our knowledge of how land use and elevation affect carbon stocks in tropical ecosystems is very limited. We compared aboveground biomass of trees, shrubs and herbs for eleven natural and human-influenced habitat types occurring over a wide elevation gradient (866–4550 m) at the world's highest solitary mountain, Mount Kilimanjaro. Thanks to the enormous elevation gradient, we covered important natural habitat types, e.g., savanna woodlands, montane rainforest and afro-alpine vegetation, as well as important land-use types such as maize fields, grasslands, traditional home gardens, coffee plantations and selectively logged forest. To assess tree and shrub biomass with pantropical allometric equations, we measured tree height, diameter at breast height and wood density and to assess herbaceous biomass, we sampled destructively. Among natural habitats, tree biomass was highest at intermediate elevation in the montane zone (340 Mg ha−1), shrub biomass declined linearly from 7 Mg ha−1 at 900 m to zero above 4000 m, and, inverse to tree biomass, herbaceous biomass was lower at mid-elevations (1 Mg ha−1) than in savannas (900 m, 3 Mg ha−1) or alpine vegetation (above 4000 m, 6 Mg ha−1). While the various land-use types dramatically decreased woody biomass at all elevations, though to various degrees, herbaceous biomass was typically increased. Our study highlights tropical montane forest biomass as important aboveground carbon stock and quantifies the extent of the strong aboveground biomass reductions by the major land-use types, common to East Africa. Further, it shows that elevation and land use differently affect different vegetation strata, and thus the matrix for other organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although plastic root-foraging responses are thought to be adaptive, as they may optimize nutrient capture of plants, this has rarely been tested. We investigated whether nutrient-foraging responses are adaptive, and whether they pre-adapt alien species to become natural-area invaders. We grew 12 pairs of congeneric species (i.e., 24 species) native to Europe in heterogeneous and homogeneous nutrient environments, and compared their foraging responses and performance. One species in each pair is a USA natural-area invader, and the other one is not. Within species, individuals with strong foraging responses, measured as plasticity in root diameter and specific root length, had a higher biomass. Among species, the ones with strong foraging responses, measured as plasticity in root length and root biomass, had a higher biomass. Our results therefore suggest that root foraging is an adaptive trait. Invasive species showed significantly stronger root-foraging responses than non-invasive species when measured as root diameter. Biomass accumulation was decreased in the heterogeneous vs. the homogeneous environment. In aboveground, but not belowground and total biomass, this decrease was smaller in invasive than in non-invasive species. Our results show that strong plastic root-foraging responses are adaptive, and suggest that it might aid in pre-adapting species to becoming natural-area invaders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ongoing rapid and vast land cover and land use transformations in Laos are only documented by punctual local case studies; information on national level is barely available. We explore ways to address this by using MODIS vegetation index times series data to detect medium to large scale transformation on the national level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

• Premise of the study: Because not all plant species will be able to move in response to global warming, adaptive evolution matters largely for plant persistence. As prerequisites for adaptive evolution, genetic variation in and selection on phenotypic traits are needed, but these aspects have not been studied in tropical species. We studied how plants respond to transplantation to different elevations on Mt. Kilimanjaro, Tanzania, and whether there is quantitative genetic (among-seed family) variation in and selection on life-history traits and their phenotypic plasticity to the different environments. • Methods: We reciprocally transplanted seed families of 15 common tropical, herbaceous species of the montane and savanna vegetation zone at Mt. Kilimanjaro to a watered experimental garden in the montane (1450 m) and in the savanna (880 m) zone at the mountain’s slope and measured performance, reproductive, and phenological traits. • Results: Plants generally performed worse in the savanna garden, indicating that the savanna climate was more stressful and thus that plants may suffer from future climate warming. We found significant quantitative genetic variation in all measured performance and reproductive traits in both gardens and for several measures of phenotypic plasticity in response to elevational transplantation. Moreover, we found positive selection on traits at low and intermediate trait values levelling to neutral or negative selection at high values. • Conclusions: We conclude that common plants at Mt. Kilimanjaro express quantitative genetic variation in fitness-relevant traits and in their plasticities, suggesting potential to adapt evolutionarily to future climate warming and increased temperature variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866–4550m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human)-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover) was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To reconstruct the vegetation history of the Upper Engadine, continuous sediment cores covering the past 11 800 years from Lej da Champfer and Lej da San Murezzan (Upper Engadine Valley, c. 1800 m a.s.l., southeastern Switzerland) have been analysed for pollen and plant macrofossils. The chronologies of the cores are based on 16 and 22 radiocarbon dates, respectively. The palaeobotanical records of both lakes are in agreement for the Holocene, but remarkable differences exist between the sites during the period 11 100 to 10 500 cal. BP, when Lej da Champfer was affected by re-sedimentation processes. Macrofossil data suggest that Holocene afforestation began at around 11400 cal. BP. A climatic deterioration, the Preboreal Oscillation, stopped and subsequently delayed the establishment of trees until c. 11000 cal. BP, when first Betula, then Pinus sylvestrislmugo, then Larix 300 years later, and finally Pinus cembra expanded within the lake catchment. Treeline was at c. 1500 m during the Younger Dryas (12 542- 11 550 cal. BP) in the Central Alps. Our results, along with other macrofossil studies from the Alps, suggest a nearly simultaneous afforestation (e.g., by Pinus sylvestris in the lower subalpine belt) between 1500 and 2340 m a.s.l. at around 11 400 to 11 300 cal. BP. We suggest that forest-limit species (e.g., Pinus cembra, Larix decidua) could expand faster at today's treeline (c. 2350 m a.s.l.), than 550 m lower. Earlier expansions at higher altitudes probably resulted from reduced competition with low-altitude trees (e.g. Pinus sylvestris) and herbaceous species. Comparison with other proxies such as oxygen isotopes, residual A14C, glacier fluctuations, and alpine climatic cooling phases suggests climatic sensitivity of vegetation during the early Holocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 The Early Holocene sediment of a lake at tree line (Gouillé Rion, 2343 m a.s.l.) in the Swiss Central Alps was sampled for plant macrofossils. Thin (0.5 cm) slices, representing time intervals of c. 50 years each from 11 800 to 7800 cal. year bp, were analysed and the data compared with independent palaeoclimatic proxies to study vegetational responses to environmental change. 2 Alpine plant communities (e.g. with Salix herbacea) were established at 11 600–11 500 cal. year bp, when oxygen-isotope records showed that temperatures increased by c. 3–4 °C within decades. Larix decidua trees reached the site at c. 11 350 cal. year bp, probably in response to further warming by 1–2 °C. Forests dominated by L. decidua persisted until 9600 cal. year bp, when Pinus cembra became more important. 3 The dominance of Larix decidua for two millennia is explained by dry summer conditions, and possibly low winter temperatures, which favoured it over the late-successional Pinus cembra. Environmental conditions were a result of variations in the earth's orbit, leading to a maximum of summer and a minimum of winter solar radiation. Other heliophilous and drought-adapted species, such as Dryas octopetala and Juniperus nana, could persist in the open L. decidua forests, but were out-competed when the shade-tolerant P. cembra expanded. 4 The relative importance of Larix decidua decreased during periods of diminished solar radiation at 11 100, 10 100 and 9400 cal. year bp. Stable concentrations of L. decidua indicate that these percentage oscillations were caused by temporary increases of Pinus cembra, Dryas octopetala and Juniperus nana that can be explained by increases in moisture and/or decreases in summer temperature. 5 The final collapse of Larix decidua at 8400 cal. year bp was possibly related to abrupt climatic cooling as a consequence of a large meltwater input to the North Atlantic. Similarly, the temporary exclusion of Pinus cembra from tree line at 10 600–10 200 cal. year bp may be related to slowing down of thermohaline circulation at 10 700–10 300 cal. year bp. 6 Our results show that tree line vegetation was in dynamic equilibrium with climate, even during periods of extraordinarily rapid climatic change. They also imply that forecasted global warming may trigger rapid upslope movements of the tree line of up to 800 m within a few decades or centuries at most, probably inducing large-scale displacements of plant species as well as irrecoverable biodiversity losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollen and plant macrofossils were analysed at Sägistalsee (1935 m asl), a small lake near timber-line in the Swiss Northern Alps. Open forests with Pinus cembra and Abies alba covered the catchment during the early Holocene (9000–6300 cal. BP), suggesting subcontinental climate conditions. After the expansion of Picea abies between 6300 and 6000 cal. BP the subalpine forest became denser and the tree-line reached its maximum elevation at around 2260 m asl. Charcoal fragments in the macrofossil record indicate the beginning of Late-Neolithic human impact at ca. 4400 cal. BP, followed by a extensive deforestation and lowering of the forest-limit in the catchment of Sägistalsee at 3700 cal. BP (Bronze Age). Continuous human activity, combined with a more oceanic climate during the later Holocene, led to the local extinction of Pinus cembra and Abies alba and favoured the mass expansion of Picea and Alnus viridis in the subalpine area of the Northern Alps. The periods before 6300 and after 3700 cal. BP are characterised by high erosion activity in the lake's catchment, whereas during the phase of dense Picea-Pinus cembra-Abies forests (6300–3700 cal. BP) soils were stable and sediment-accumulation rates in the lake were low. Due to decreasing land-use at higher altitudes during the Roman occupation and the Migration period, forests spread beween ca. 2000 and 1500 cal. BP, before human impact increased again in the early Middle Ages. Recent reforestation due to land-use changes in the 20th century is recorded in the top sediments. Pollen-inferred July temperature and annual precipitation suggest a trend to cooler and more oceanic climate starting at about 5500 cal. BP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

o reconstruct the vegetation and fire history of the Upper Engadine, two continuous sediment cores from Lej da Champfèr and Lej da San Murezzan (Upper Engadine Valley, southeastern Switzerland) were analysed for pollen, plant macrofossils, charcoal and kerogen. The chronologies of the cores are based on 38 radiocarbon dates. Pollen and macrofossil data suggest a rapid afforestation with Betula, Pinus sylvestris, Pinus cembra, and Larix decidua after the retreat of the glaciers from the lake catchments 11,000 cal years ago. This vegetation type persisted until ca. 7300 cal b.p. (5350 b.c.) when Picea replaced Pinus cembra. Pollen indicative of human impact suggests that in this high-mountain region of the central Alps strong anthropogenic activities began during the Early Bronze Age (3900 cal b.p., 1950 b.c.). Local human settlements led to vegetational changes, promoting the expansion of Larix decidua and Alnus viridis. In the case of Larix, continuing land use and especially grazing after fire led to the formation of Larix meadows. The expansion of Alnus viridis was directly induced by fire, as evidenced by time-series analysis. Subsequently, the process of forest conversion into open landscapes continued for millennia and reached its maximum at the end of the Middle Ages at around 500 cal b.p. (a.d. 1450).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollen stratigraphy of a core 270 cm long from Lake Dalgoto at 2310 m in the Northern Pirin Mountains, southern Bulgaria, was treated by optimal partitioning and compared to a broken-stick model to reveal statistically significant pollen zones. The vegetational reconstructions presented here are based on pollen percentages and pollen influx, on comparisons of modern and fossil pollen spectra, and on macrofossil dates from other sites in the mountains. During the Younger Dryas (11000–10200 14C yr BP), an open xerophytic herb vegetation with Artemisia and Chenopodiaceae was widely developed around the lake. Deciduous trees growing at lower elevations contributed to the pollen rain deposited at the higher-elevation sampling sites. Specifically, from 10200 to 8500 yr BP, Quercus, Ulmus, Tilia and Betula expanded rapidly at low and intermediate elevations, and between 8500 and 6500 yr BP they extended to higher elevations close to the upper forest limit, which was formed by Betula pendula at about 1900 m. Coniferous species were limited in the region at this time. After 6500 yr BP, the expansion of conifers (Pinus peuce, P. sylvestris, P. mugo, Abies alba) at high elevations forced the deciduous trees downward. Between 6500 and 3000 yr BP, the forest limit at 2200 m was formed by P. peuce, and A. alba had its maximum vertical range up to 1900 m. Later the abundance and vertical range of P. peuce and A. alba were reduced. After 3000 yr BP, Picea expanded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Only few studies documenting the vegetation history of the Llanos de Moxos, one of the largest seasonally flooded wetland areas in South America, are available and little is known about the environmental impact of pre-Columbian settlements. We use radiocarbon-dated terrestrial plant macrofossils to establish a sound chronology and palynological analyses to reconstruct the vegetation and fire history of the Lago Rogaguado area. The sedimentary pollen and spore record suggests that wetland and wooded savannah (Cerrado) environments occurred around the lake between 8100 and 5800 cal BP. Fire activity was high during this period and was probably connected to the dry Cerrado environments. The pollen evidence suggests early plant cultivation (Zea mays, Annonaceae and Cucurbitaceae) from 6500 cal BP onwards, which is significantly earlier than hitherto assumed for Amazonia. Gallery forests expanded after 5800 cal BP, when fire activity strongly declined. Forest expansion intensified around 2800 cal BP and continued until 2000 cal BP, when forest cover reached its maximum and fire activity its minimum. The late-Holocene forest expansion to the south and the decrease of fire activity may have resulted from a climatic shift to moister conditions (possibly a shorter dry season). New crops (e.g. Avena-type) or adventive plants (e.g. Rumex acetosella-type) document the impact of European economies after ca. 500 cal BP. Land use intensity remained rather stable over the most recent centuries, arguing against a collapse of settlements in response to the arrival of Europeans, as reconstructed from other Amazonian pollen records.