63 resultados para HEMORRHAGIC CYSTITIS
Resumo:
BACKGROUND CONTEXT In canine intervertebral disc (IVD) extrusion, a spontaneous animal model of spinal cord injury, hemorrhage is a consistent finding. In rodent models, hemorrhage might be involved in secondary tissue destruction by biochemical mechanisms. PURPOSE This study aimed to investigate a causal association between the extents of intramedullary, subdural and epidural hemorrhage and the severity of spinal cord damage following IVD extrusion in dogs. STUDY DESIGN/SETTING A retrospective study using histologic spinal cord sections from 83 dogs euthanized following IVD extrusion was carried out. METHODS The degree of hemorrhage (intramedullary, subdural, epidural), the degree of spinal cord damage in the epicenter (white and gray matter), and the longitudinal extent of myelomalacia were graded. Associations between the extent of hemorrhage and the degree of spinal cord damage were evaluated statistically. RESULTS Intramedullary and subdural hemorrhages were significantly associated with the degree of white (p<.001/ p=.004) and gray (both p<.001) matter damage, and with the longitudinal extension of myelomalacia (p<.001/p=.005). Intriguingly, accumulation of hemorrhagic cord debris inside or dorsal to a distended and ruptured central canal in segments distant to the epicenter of the lesion was observed exhibiting a wave-like pattern on longitudinal assessment. The occurrence of this debris accumulation was associated with high degrees of tissue destruction (all p<.001). CONCLUSIONS Tissue liquefaction and increased intramedullary pressure associated with hemorrhage are involved in the progression of spinal cord destruction in a canine model of spinal cord injury and ascending or descending myelomalacia. Functional and dynamic studies are needed to investigate this concept further.
Resumo:
Many viruses significantly impact human and animal health. Understanding the population dynamics of these viruses and their hosts can provide important insights for epidemiology and virus evolution. Puumala virus (PUUV) is a European hantavirus that may cause regional outbreaks of hemorrhagic fever with renal syndrome in humans. Here, we analyzed the spatiotemporal dynamics of PUUV circulating in local populations of its rodent reservoir host, the bank vole (Myodes glareolus) during eight years. Phylogenetic and population genetic analyses of all three genome segments of PUUV showed strong geographical structuring at a very local scale. There was a high temporal turnover of virus strains in the local bank vole populations, but several virus strains persisted through multiple years. Phylodynamic analyses showed no significant changes in the local effective population sizes of PUUV, although vole numbers and virus prevalence fluctuated widely. Microsatellite data demonstrated also a temporally persisting subdivision between local vole populations, but these groups did not correspond to the subdivision in the virus strains. We conclude that restricted transmission between vole populations and genetic drift play important roles in shaping the genetic structure and temporal dynamics of PUUV in its natural host which has several implications for zoonotic risks of the human population.
Resumo:
Subarachnoid hemorrhage is a stroke subtype with particularly bad outcome. Recent findings suggest that constrictions of pial arterioles occurring early after hemorrhage may be responsible for cerebral ischemia and - subsequently - unfavorable outcome after subarachnoid hemorrhage. Since we recently hypothesized that the lack of nitric oxide may cause post-hemorrhagic microvasospasms, our aim was to investigate whether inhaled nitric oxide, a treatment paradigm selectively delivering nitric oxide to ischemic microvessels, is able to dilate post-hemorrhagic microvasospasms; thereby improving outcome after experimental subarachnoid hemorrhage. C57BL/6 mice were subjected to experimental SAH. Three hours after subarachnoid hemorrhage pial artery spasms were quantified by intravital microscopy, then mice received inhaled nitric oxide or vehicle. For induction of large artery spasms mice received an intracisternal injection of autologous blood. Inhaled nitric oxide significantly reduced number and severity of subarachnoid hemorrhage-induced post-hemorrhage microvasospasms while only having limited effect on large artery spasms. This resulted in less brain-edema-formation, less hippocampal neuronal loss, lack of mortality, and significantly improved neurological outcome after subarachnoid hemorrhage. This suggests that spasms of pial arterioles play a major role for the outcome after subarachnoid hemorrhage and that lack of nitric oxide is an important mechanism of post-hemorrhagic microvascular dysfunction. Reversing microvascular dysfunction by inhaled nitric oxide might be a promising treatment strategy for subarachnoid hemorrhage.