67 resultados para Gems, Ancient
Resumo:
It is not sufficiently understood why some lineages of cichlid fishes have proliferated in the Great Lakes of East Africa much more than anywhere else in the world, and much faster than other cichlid lineages or any other group of freshwater fish. Recent field and experimental work on Lake Victoria haplochromines suggests that mate choice-mediated disruptive sexual selection on coloration, that can cause speciation even in the absence of geographical isolation, may explain it. We summarize the evidence and propose a hypothesis for the genetics of coloration that may help understand the phenomenon. By detl ning colour patterns by hue and arrangement of hues on the body, we could assign almost all observed phenotypes of Lake Victoria cichlids to one of three female («plain», «orange blotched», «black and white») and three male («blue», «red-ventrum», «reddorsum») colour patterns. These patterns diagnose species but frequently eo-occur also as morphs within the same population, where they are associated with variation in mate preferences, and appear to be transient stages in speciation. Particularly the male patterns occur in almost every genus of the species flock. We propose that the patterns and their association into polymorphisms express an ancestral trait that is retained across speciation. Our model for male colour pattern assumes two structural loci. When both are switched off, the body is blue. When switched on by a cascade of polymorphic regulatory genes, one expresses a yellow to red ventrum, the other one a yellow to red dorsum. The expression of colour variation initiates speciation. The blue daughter species will inherit the variation at the regulatory genes that can, without new mutational events, purely by recombination, again expose the colour polymorphism, starting the process anew. Very similar colour patterns also dominate among the Mbuna of Lake Malawi. In contrast, similar colour polymorphisms do not exist in the lineages that have not proliferated in the Great Lakes. The colour pattern polymorphism may be an ancient trait in the lineage (or lineages) that gave rise to the two large haplochromine radiations. We propose two tests of our hypothesis.
Resumo:
Im Jahr 1866 verfasste der damals in Breslau lehrende römisch-katholische Kirchenhistoriker Joseph Hubert Reinkens eine der ersten historisch-kritischen Studien in deutscher Sprache über Martin von Tours, in der er sich u.a. mit Martins bischöflichem Leitungsdienst befasste. Nach dem Ersten Vatikanischen Konzil (1870) wurde Reinkens 1873 der erste Bischof für die Alt-Katholiken im Deutschen Reich. Der Beitrag beschreibt den Einfluss, den Reinkens' Martin-Rezeption auf sein theologisches und praktisches Verständnis des Bischofsamts hatte.
Resumo:
We reconstruct the aquatic ecosystem interactions since the last interglacial period in the oldest, most diverse, hydrologically connected European lake system, by using palaeolimnological diatom and selected geochemistry data from Lake Ohrid “DEEP site” core and equivalent data from Lake Prespa core, Co1215. Driven by climate forcing, the lakes experienced two adaptive cycles during the last 92 ka: "interglacial and interstadial" and "glacial" cycle. The short-term ecosystems reorganizations, e.g. regime shifts within these cycles substantially differ between the lakes, as evident from the inferred amplitudes of variation. The deeper Lake Ohrid shifted between ultra oligo- and oligotrophic regimes in contrast to the much shallower Lake Prespa, which shifted from a deeper, (oligo-) mesotrophic to a shallower, eutrophic lake and vice versa. Due to the high level of ecosystem stability (e.g. trophic state, lake level), Lake Ohrid appears relatively resistant to external forcing, such as climate and environmental change. Recovering in a relatively short time from major climate change, Lake Prespa is a resilient ecosystem. At the DEEP site, the decoupling between the lakes' response to climate change is marked in the prolonged and gradual changes during the MIS 5/4 and 2/1 transitions. These response differences and the lakes' different physical and chemical properties may limit the influence of Lake Prespa on Lake Ohrid. Regime shifts of Lake Ohrid due to potential hydrological change in Lake Prespa are not evident in the data presented here. Moreover, a complete collapse of the ecosystems functionality and loss of their diatom communities did not happen in either lake for the period presented in the study.
Resumo:
Sedimentary sequences in ancient or long-lived lakes can reach several thousands of meters in thickness and often provide an unrivalled perspective of the lake's regional climatic, environmental, and biological history. Over the last few years, deep-drilling projects in ancient lakes became increasingly multi- and interdisciplinary, as, among others, seismological, sedimentological, biogeochemical, climatic, environmental, paleontological, and evolutionary information can be obtained from sediment cores. However, these multi- and interdisciplinary projects pose several challenges. The scientists involved typically approach problems from different scientific perspectives and backgrounds, and setting up the program requires clear communication and the alignment of interests. One of the most challenging tasks, besides the actual drilling operation, is to link diverse datasets with varying resolution, data quality, and age uncertainties to answer interdisciplinary questions synthetically and coherently. These problems are especially relevant when secondary data, i.e., datasets obtained independently of the drilling operation, are incorporated in analyses. Nonetheless, the inclusion of secondary information, such as isotopic data from fossils found in outcrops or genetic data from extant species, may help to achieve synthetic answers. Recent technological and methodological advances in paleolimnology are likely to increase the possibilities of integrating secondary information. Some of the new approaches have started to revolutionize scientific drilling in ancient lakes, but at the same time, they also add a new layer of complexity to the generation and analysis of sediment-core data. The enhanced opportunities presented by new scientific approaches to study the paleolimnological history of these lakes, therefore, come at the expense of higher logistic, communication, and analytical efforts. Here we review types of data that can be obtained in ancient lake drilling projects and the analytical approaches that can be applied to empirically and statistically link diverse datasets to create an integrative perspective on geological and biological data. In doing so, we highlight strengths and potential weaknesses of new methods and analyses, and provide recommendations for future interdisciplinary deep-drilling projects.