431 resultados para Fotomoltiplicatori, PMT, LHC, ATLAS, LUCID, guadagno assoluto
Resumo:
In order to study further the long-range correlations ("ridge") observed recently in p+Pb collisions at sqrt(s_NN) =5.02 TeV, the second-order azimuthal anisotropy parameter of charged particles, v_2, has been measured with the cumulant method using the ATLAS detector at the LHC. In a data sample corresponding to an integrated luminosity of approximately 1 microb^(-1), the parameter v_2 has been obtained using two- and four-particle cumulants over the pseudorapidity range |eta|<2.5. The results are presented as a function of transverse momentum and the event activity, defined in terms of the transverse energy summed over 3.1
Resumo:
A search for pair-produced third generation scalar leptoquarks is presented, using proton-proton collisions at root s = 7 TeV at the LHC. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 4.7 fb(-1). Each leptoquark is assumed to decay to a tau lepton and a b-quark with a branching fraction equal to 100%. No statistically significant excess above the Standard Model expectation is observed. Third generation leptoquarks are therefore excluded at 95% confidence level for masses less than 534 GeV.
Resumo:
A search for a charged Higgs boson (H+) in t (t) over bar decays is presented, where one of the top quarks decays via t -> H(+)b, followed by H+ -> two jets (c (s) over bar). The other top quark decays to Wb, where the W boson then decays into a lepton (e/mu) and a neutrino. The data were recorded in pp collisions at root s = 7 TeV by the ATLAS detector at the LHC in 2011, and correspond to an integrated luminosity of 4.7 fb(-1). With no observation of a signal, 95 % confidence level (CL) upper limits are set on the decay branching ratio of top quarks to charged Higgs bosons varying between 5 % and 1 % for H+ masses between 90 GeV and 150 GeV, assuming B(H+ -> c (s) over bar) = 100 %.
Resumo:
This paper reports a measurement of the W+b-jets (W+b+X and W+b (b) over bar +X) production cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. These results are based on data corresponding to an integrated luminosity of 4.6 fb(-1), collected with the ATLAS detector. Cross-sections are presented as a function of jet multiplicity and of the transverse momentum of the leading b-jet for both the muon and electron decay modes of the W boson. The W+b-jets cross-section, corrected for all known detector effects, is quoted in a limited kinematic range. Combining the muon and electron channels, the fiducial cross-section for W+b-jets is measured to be 7.1 +/- 0.5 (stat) +/- 1.4 (syst) pb, consistent with the next-to-leading order QCD prediction, corrected for non-perturbative and double-parton interactions (DPI) contributions, of 4.70 +/- 0.09 (stat) (+0.60)(-0.49) (scale) +/- 0.06 (PDF) +/- 0.16 (non-pert) (+0.52)(-0.38) (DPI) pb.
Resumo:
The results of a search for an excited bottom-quark b* in pp collisions at root s = 7 TeV, using 4.7 fb(-1) of data collected by the ATLAS detector at the LHC are presented. In the model studied, a single b*-quark is produced through a chromomagnetic interaction and subsequently decays to a W boson and a top quark. The search is performed in the dilepton and lepton + jets final states, which are combined to set limits on b*-quark couplings for a range of b*-quark masses. For a benchmark with unit size chromomagnetic and Standard Model-like electroweak b* couplings, b* quarks with masses less than 870 GeV are excluded at the 95% credibility level.
Resumo:
The ATLAS experiment has observed 1995 Z boson candidates in data corresponding to 0.15 nb(-1) of integrated luminosity obtained in the 2011 LHC Pb + Pb run at root s(NN) = 2.76 TeV. The Z bosons are reconstructed via dielectron and dimuon decay channels, with a background contamination of less than 3%. Results from the two channels are consistent and are combined. Within the statistical and systematic uncertainties, the per-event Z boson yield is proportional to the number of binary collisions estimated by the Glauber model. The elliptic anisotropy of the azimuthal distribution of the Z boson with respect to the event plane is found to be consistent with zero.
Resumo:
A search is presented for production of a heavy up-type quark (t') together with its antiparticle, assuming a significant branching ratio for subsequent decay into a W boson and a b quark. The search is based on 4.7 fb(-1) of pp collisions root s = 7 TeV recorded in 2011 with the ATLAS detector at the CERN Large Hadron Collider. Data are analyzed in the lepton + jets final state, characterized by a high-transverse-momentum isolated electron or muon, large missing transverse momentum and at least three jets. The analysis strategy relies on the substantial boost of the W bosons in the t'(t') over bar signal when m(t') greater than or similar to 400 GeV. No significant excess of events above the Standard Model expectation is observed and the result of the search is interpreted in the context of fourth-generation and vector-like quark models. Under the assumption of a branching ratio BR(t' -> W b) = I, a fourth-generation t' quark with mass lower than 656 GeV is excluded at 95% confidence level. In addition, in light of the recent discovery of a new boson of mass similar to 126 GeV at the LHC, upper limits are derived in the two-dimensional plane of BR(t' -> Wb) versus BR(t' -> Ht), where H is the Standard Model Higgs boson, for vector-like quarks of various masses.
Resumo:
A search for pair-produced massive coloured scalar particles decaying to a four-jet final state is performed by the ATLAS experiment at the LHC in proton-proton collisions at root s = 7 TeV. The analysed data sample corresponds to an integrated luminosity of 4.6 fb(-1). No deviation from the Standard Model is observed in the invariant mass spectrum of the two-jet pairs. A limit on the scalar gluon pair production cross section of 70 pb (10 pb) is obtained at the 95 % confidence level for a scalar gluon mass of 150 GeV (350 GeV). Interpreting these results as mass limits on scalar gluons, masses ranging from 150 GeV to 287 GeV are excluded at the 95 % confidence level.
Resumo:
An updated search is performed for gluino, top squark, or bottom squark R-hadrons that have come to rest within the ATLAS calorimeter, and decay at some later time to hadronic jets and a neutralino, using 5.0 and 22.9 fb(-1) of pp collisions at 7 and 8 TeV, respectively. Candidate decay events are triggered in selected empty bunch crossings of the LHC in order to remove pp collision backgrounds. Selections based on jet shape and muon system activity are applied to discriminate signal events from cosmic ray and beam-halo muon backgrounds. In the absence of an excess of events, improved limits are set on gluino, stop, and sbottom masses for different decays, lifetimes, and neutralino masses. With a neutralino of mass 100 GeV, the analysis excludes gluinos with mass below 832 GeV (with an expected lower limit of 731 GeV), for a gluino lifetime between 10 mu s and 1000 s in the generic R-hadron model with equal branching ratios for decays to q (q) over bar(chi) over tilde (0) and g (chi) over tilde (0). Under the same assumptions for the neutralino mass and squark lifetime, top squarks and bottom squarks in the Regge R-hadron model are excluded with masses below 379 and 344 GeV, respectively.
Resumo:
A search is presented for direct chargino production based on a disappearing-track signature using 20.3 fb−1 of proton-proton collisions at s√=8 TeV collected with the ATLAS experiment at the LHC. In anomaly-mediated supersymmetry breaking (AMSB) models, the lightest chargino is nearly mass degenerate with the lightest neutralino and its lifetime is long enough to be detected in the tracking detectors by identifying decays that result in tracks with no associated hits in the outer region of the tracking system. Some models with supersymmetry also predict charginos with a significant lifetime. This analysis attains sensitivity for charginos with a lifetime between 0.1 and 10 ns, and significantly surpasses the reach of the LEP experiments. No significant excess above the background expectation is observed for candidate tracks with large transverse momentum, and constraints on chargino properties are obtained. In the AMSB scenarios, a chargino mass below 270 GeV is excluded at 95% confidence level.
Resumo:
This paper presents a measurement of the top quark pair () production charge asymmetry A (C) using 4.7 fb(-1) of proton-proton collisions at a centre-of-mass energy root s = 7 TeV collected by the ATLAS detector at the LHC. A -enriched sample of events with a single lepton (electron or muon), missing transverse momentum and at least four high transverse momentum jets, of which at least one is tagged as coming from a b-quark, is selected. A likelihood fit is used to reconstruct the event kinematics. A Bayesian unfolding procedure is employed to estimate A (C) at the parton-level. The measured value of the production charge asymmetry is A (C) = 0.006 +/- 0.010, where the uncertainty includes both the statistical and the systematic components. Differential A (C) measurements as a function of the invariant mass, the rapidity and the transverse momentum of the system are also presented. In addition, A (C) is measured for a subset of events with large velocity, where physics beyond the Standard Model could contribute. All measurements are consistent with the Standard Model predictions.
Resumo:
A search is presented for new particles in an extension to the Standard Model that includes a heavy Higgs boson (H-0), an intermediate charged Higgs-boson pair (H-+/-), and a light Higgs boson (h(0)). The analysis searches for events involving the production of a single heavy neutral Higgs boson which decays to the charged Higgs boson and a W boson, where the charged Higgs boson subsequently decays into a W boson and the lightest neutral Higgs boson decaying to a bottom-antibottom-quark pair. Such a cascade results in a W-boson pair and a bottom-antibottom-quark pair in the final state. Events with exactly one lepton, missing transverse momentum, and at least four jets are selected from a data sample corresponding to an integrated luminosity of 20.3 fb(-1), collected by the ATLAS detector in proton-proton collisions at root s = 8 TeV at the LHC. The data are found to be consistent with Standard Model predictions, and 95% confidence-level upper limits are set on the product of cross section and branching ratio. These limits range from 0.065 to 43 pb as a function of H-0 and H-+/- masses, with m(h)o fixed at 125 GeV.
Resumo:
This Letter presents a search for quantum black-hole production using 20.3 fb(-1) of data collected with the ATLAS detector in pp collisions at the LHC at root s = 8 TeV. The quantum black holes are assumed to decay into a final state characterized by a lepton (electron or muon) and a jet. In either channel, no event with a lepton-jet invariant mass of 3.5 TeV or more is observed, consistent with the expected background. Limits are set on the product of cross sections and branching fractions for the lepton + jet final states of quantum black holes produced in a search region for invariant masses above 1 TeV. The combined 95% confidence level upper limit on this product for quantum black holes with threshold mass above 3.5 TeV is 0.18 fb. This limit constrains the threshold quantum black-hole mass to be above 5.3 TeV in the model considered.
Resumo:
A measurement of charged-particle distributions sensitive to the properties of the underlying event is presented for an inclusive sample of events containing a Z-boson, decaying to an electron or muon pair. The measurement is based on data collected using the ATLAS detector at the LHC in proton–proton collisions at a centre-of-mass energy of 7 TeV with an integrated luminosity of 4.6fb−1. Distributions of the charged particle multiplicity and of the charged particle transverse momentum are measured in regions of azimuthal angle defined with respect to the Z-boson direction. The measured distributions are compared to similar distributions measured in jet events, and to the predictions of various Monte Carlo generators implementing different underlying event models.
Resumo:
Measurements of two-particle correlation functions and the first five azimuthal harmonics, v 1 to v 5 , are presented, using 28 nb −1 of p+Pb collisions at a nucleon-nucleon center-of-mass energy of √s NN=5.02 TeV measured with the ATLAS detector at the LHC. Significant long-range “ridgelike” correlations are observed for pairs with small relative azimuthal angle (|Δϕ|<π/3 ) and back-to-back pairs (|Δϕ|>2π/3 ) over the transverse momentum range 0.4
4 GeV. The v 2 (p T ) , v 3 (p T ) , and v 4 (p T ) are compared to the v n coefficients in Pb+Pb collisions at √s NN=2.76 TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average p T of particles produced in the two collision systems.