105 resultados para FLASH code
Resumo:
The reconstruction of past flash floods in ungauged basins leads to a high level of uncertainty, which increases if other processes are involved such as the transport of large wood material. An important flash flood occurred in 1997 in Venero Claro (Central Spain), causing significant economic losses. The wood material clogged bridge sections, raising the water level upstream. The aim of this study was to reconstruct this event, analysing the influence of woody debris transport on the flood hazard pattern. Because the reach in question was affected by backwater effects due to bridge clogging, using only high water mark or palaeostage indicators may overestimate discharges, and so other methods are required to estimate peak flows. Therefore, the peak discharge was estimated (123 ± 18 m3 s–1) using indirect methods, but one-dimensional hydraulic simulation was also used to validate these indirect estimates through an iterative process (127 ± 33 m3 s–1) and reconstruct the bridge obstruction to obtain the blockage ratio during the 1997 event (~48%) and the bridge clogging curves. Rainfall–Runoff modelling with stochastic simulation of different rainfall field configurations also helped to confirm that a peak discharge greater than 150 m3 s–1 is very unlikely to occur and that the estimated discharge range is consistent with the estimated rainfall amount (233 ± 27 mm). It was observed that the backwater effect due to the obstruction (water level ~7 m) made the 1997 flood (~35-year return period) equivalent to the 50-year flood. This allowed the equivalent return period to be defined as the recurrence interval of an event of specified magnitude, which, where large woody debris is present, is equivalent in water depth and extent of flooded area to a more extreme event of greater magnitude. These results highlight the need to include obstruction phenomena in flood hazard analysis.
Resumo:
One of the main problems of flood hazard assessment in ungauged or poorly gauged basins is the lack of runoff data. In an attempt to overcome this problem we have combined archival records, dendrogeomorphic time series and instrumental data (daily rainfall and discharge) from four ungauged and poorly gauged mountain basins in Central Spain with the aim of reconstructing and compiling information on 41 flash flood events since the end of the 19th century. Estimation of historical discharge and the incorporation of uncertainty for the at-site and regional flood frequency analysis were performed with an empirical rainfall–runoff assessment as well as stochastic and Bayesian Markov Chain Monte Carlo (MCMC) approaches. Results for each of the ungauged basins include flood frequency, severity, seasonality and triggers (synoptic meteorological situations). The reconstructed data series clearly demonstrates how uncertainty can be reduced by including historical information, but also points to the considerable influence of different approaches on quantile estimation. This uncertainty should be taken into account when these data are used for flood risk management.
Resumo:
Virtual worlds have moved from being a geek topic to one of mainstream academic interest. This transition is contingent not only on the augmented economic, societal and cultural value of these virtual realities and their effect upon real life but also on their convenience as fields for experimentation, for testing models and paradigms. User creation is however not something that has been transplanted from the real to the virtual world but a phenomenon and a dynamic process that happens from within and is defined through complex relationships between commercial and non-commercial, commodified and not commodified, individual and of the community, amateur and professional, art and not art. Accounting for this complex environment, the present paper explores user created content in virtual worlds, its dimensions and value and above all, its constraints by code and law. It puts forward suggestions for better understanding and harnessing this creativity.
Resumo:
Digital technologies have profoundly changed not only the ways we create, distribute, access, use and re-use information but also many of the governance structures we had in place. Overall, "older" institutions at all governance levels have grappled and often failed to master the multi-faceted and multi-directional issues of the Internet. Regulatory entrepreneurs have yet to discover and fully mobilize the potential of digital technologies as an influential factor impacting upon the regulability of the environment and as a potential regulatory tool in themselves. At the same time, we have seen a deterioration of some public spaces and lower prioritization of public objectives, when strong private commercial interests are at play, such as most tellingly in the field of copyright. Less tangibly, private ordering has taken hold and captured through contracts spaces, previously regulated by public law. Code embedded in technology often replaces law. Non-state action has in general proliferated and put serious pressure upon conventional state-centered, command-and-control models. Under the conditions of this "messy" governance, the provision of key public goods, such as freedom of information, has been made difficult or is indeed jeopardized.The grand question is how can we navigate this complex multi-actor, multi-issue space and secure the attainment of fundamental public interest objectives. This is also the question that Ian Brown and Chris Marsden seek to answer with their book, Regulating Code, as recently published under the "Information Revolution and Global Politics" series of MIT Press. This book review critically assesses the bold effort by Brown and Marsden.
Resumo:
This paper addresses an investigation with machine learning (ML) classification techniques to assist in the problem of flash flood now casting. We have been attempting to build a Wireless Sensor Network (WSN) to collect measurements from a river located in an urban area. The machine learning classification methods were investigated with the aim of allowing flash flood now casting, which in turn allows the WSN to give alerts to the local population. We have evaluated several types of ML taking account of the different now casting stages (i.e. Number of future time steps to forecast). We have also evaluated different data representation to be used as input of the ML techniques. The results show that different data representation can lead to results significantly better for different stages of now casting.