113 resultados para Economical and feasibility study
Resumo:
OBJECTIVE: The purpose was to qualitatively and quantitatively compare the bone formation and graft resorption of two different bone substitutes used in both orthopedic and oral surgery, with autogenous bone as a positive control. MATERIALS AND METHODS: Three standardized bone defects were prepared in both mandibular angles of 12 adult minipigs. The defects were grafted with either autograft, anorganic bovine bone (ABB), or synthetic beta-tricalcium phosphate (beta-TCP). Sacrifice was performed after 1, 2, 4, and 8 weeks for histologic and histomorphometric analysis. RESULTS: At 2 weeks, more new bone formation was seen in defects filled with autograft than with ABB (P approximately 0.0005) and beta-TCP (P approximately 0.002). After 4 weeks, there was no significant difference between beta-TCP and the two other materials. Defects grafted with ABB still exhibited less bone formation as compared with autograft (P approximately 0.004). At 8 weeks, more bone formation was observed in defects grafted with autograft (P approximately 0.003) and beta-TCP (P approximately 0.00004) than with ABB. No difference could be demonstrated between beta-TCP and autograft. beta-TCP resorbed almost completely over 8 weeks, whereas ABB remained stable. CONCLUSION: Both bone substitutes seemed to decelerate bone regeneration in the early healing phase as compared with autograft. All defects ultimately regenerated with newly formed bone and a developing bone marrow. The grafting materials showed complete osseous integration. Both bone substitutes may have a place in reconstructive surgery where different clinical indications require differences in biodegradability.
Resumo:
OBJECTIVE: A novel biphasic calcium phosphate (CaP) granulate consisting of hydroxyapatite (HA) and beta-tricalciumphosphate (TCP) was compared with pure HA and pure TCP and with autograft as positive control. MATERIALS AND METHODS: Four standardized bone defects were prepared in both mandibular angles of 16 minipigs and grafted with autogenous bone chips, HA, HA/TCP (60% : 40%), or TCP. Histologic and histomorphometric analysis of bone formation and graft degradation followed healing periods of 2, 4, 8, and 24 weeks. RESULTS: 2 weeks: more bone formation in defects filled with autograft than with the three CaP materials (P<0.05). 4 weeks: bone formation differed significantly (P<0.05) between all four materials (autograft>TCP>HA/TCP>HA). 8 weeks: more bone formation in defects with autograft and TCP than with HA/TCP (P<0.05), and HA/TCP had more bone formation than HA (P<0.05). 24 weeks: no difference in bone formation between the groups. Autograft and TCP resorbed quickly and almost completely over 8 weeks, whereas HA/TCP and HA showed limited degradation over 24 weeks. CONCLUSION: All defects healed with mature lamellar bone and intimate contact between bone and the remaining graft material. The rate of bone formation corresponded to the content of TCP in the CaP materials.
Resumo:
Several divergent cortical mechanisms generating multistability in visual perception have been suggested. Here, we investigated the neurophysiologic time pattern of multistable perceptual changes by means of a simultaneous recording with electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Volunteers responded to the subjective perception of a sudden change between stable patterns of illusionary motion (multistable transition) during a stroboscopic paradigm. We found a global deceleration of the EEG frequency prior to a transition and an occipital-accentuated acceleration after a transition, as obtained by low-resolution electromagnetic tomography analysis (LORETA) analysis. A decrease in BOLD response was found in the prefrontal cortex before, and an increase after the transitions was observed in the right anterior insula, the MT/V5 regions and the SMA. The thalamus and left superior temporal gyrus showed a pattern of decrease before and increase after transitions. No such temporal course was found in the control condition. The multimodal approach of data acquisition allows us to argue that the top-down control of illusionary visual perception depends on selective attention, and that a diminution of vigilance reduces selective attention. These are necessary conditions to allow for the occurrence of a perception discontinuity in absence of a physical change of the stimulus.
Resumo:
Postmortem examinations and magnetic resonance imaging (MRI) studies suggest involvement of the entorhinal cortex (EC) in schizophrenic psychoses. However, the extent and nature of the possible pathogenetical process underlying the observed alterations of this limbic key region for processing of multimodal sensory information remains unclear. Three-dimensional high-resolution MRI volumetry and evaluation of the regional diffusional anisotropy based on diffusion tensor imaging (DTI) were performed on the EC of 15 paranoid schizophrenic patients and 15 closely matched control subjects. In schizophrenic patients, EC volumes showed a slight, but not significant, decrease. However, the anisotropy values, expressed as inter-voxel coherences (COH), were found to be significantly decreased by 17.9% (right side) and 12.5% (left side), respectively, in schizophrenics. Reduction of entorhinal diffusional anisotropy can be hypothesized to be functionally related to disturbances in the perforant path, the principal efferent EC fiber tract supplying the limbic system with neuronal input from multimodal association centers. Combinations of different MRI modalities are a promising approach for the detection and characterization of subtle brain tissue alterations.
Resumo:
BACKGROUND: Repeated bronchoalveolar lavage (BAL) has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC) can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. METHODS: Male wistar rats were surfactant depleted by BAL and treated for 1 hour by conventional mechanical ventilation (Lavaged-Gas, n = 5) or partial liquid ventilation with PF 5080 (Lavaged-PF5080, n = 5). For control, 10 healthy animals with gas (Healthy-Gas, n = 5) or PF5080 filled lungs (Healthy-PF5080, n = 5) were studied. A design-based stereological approach was used for quantification of lung parenchyma and the intracellular and intraalveolar surfactant pool at the light and electron microscopic level. RESULTS: Compared to Healthy-lungs, Lavaged-animals had more type II cells with lamellar bodies in the process of secretion and freshly secreted lamellar body-like surfactant forms in the alveoli. The fraction of alveolar epithelial surface area covered with surfactant and total intraalveolar surfactant content were significantly smaller in Lavaged-animals. Compared with Gas-filled lungs, both PF5080-groups had a significantly higher total lung volume, but no other differences. CONCLUSION: After BAL-induced alveolar surfactant depletion the amount of intracellularly stored surfactant is about half as high as in healthy animals. In lavaged animals short time liquid ventilation with PF5080 did not alter intra- or extracellular surfactant content or subtype composition.
Resumo:
INTRODUCTION: The Nobel Direct implant (Nobel Biocare AB, Göteborg, Sweden) was developed to minimize marginal bone resorption and to result in "soft tissue integration" for an optimized aesthetic outcome. However, conflicting results have been presented in the literature. The aim of this present study was to evaluate the clinical and microbiologic outcomes of Nobel Direct implants. MATERIALS AND METHODS: Ten partially edentulous subjects without evidence of active periodontitis (mean age 55 years) received 12 Nobel Direct implants. Implants were loaded with single crowns after a healing period of 3 to 6 months. Treatment outcomes were assessed at month 24. Routine clinical assessments, intraoral radiographs, and microbiologic samplings were made. Histologic analysis of one failing implant and chemical spectroscopy around three unused implants was performed. Paired Wilcoxon signed-rank test was used for the evaluation of bone loss; otherwise, descriptive analysis was performed. RESULTS: Implants were functionally loaded after 3 to 6 months. At 2 years, the mean bone loss of remaining implants was 2.0 mm (SD +/- 1.1 mm; range: 0.0-3.4 mm). Three out of 12 implants with an early mean bone loss >3 mm were lost. The surviving implants showed increasing bone loss between 6 and 24 months (p = .028). Only 3 out of the 12 implants were considered successful and showed bone loss of <1.7 mm after 2 years. High rates of pathogens, including Aggregatibacter actinomycetemcomitans, Fusobacterium spp., Porphyromonas gingivalis, Pseudomonas aeruginosa, and Tanerella forsythia, were found. Chemical spectroscopy revealed, despite the normal signals from Ti, O, and C, also peaks of P, F, S, N, and Ca. A normal histologic image of osseointegration was observed in the apical part of the retrieved implant. CONCLUSION: Radiographic evidence and 25% implant failures are indications of a low success rate. High counts and prevalence of significant pathogens were found at surviving implants. Although extensive bone loss had occurred in the coronal part, the apical portion of the implant showed some bone to implant integration.
Resumo:
Multiparameter cerebral monitoring has been widely applied in traumatic brain injury to study posttraumatic pathophysiology and to manage head-injured patients (e.g., combining O(2) and pH sensors with cerebral microdialysis). Because a comprehensive approach towards understanding injury processes will also require functional measures, we have added electrophysiology to these monitoring modalities by attaching a recording electrode to the microdialysis probe. These dual-function (microdialysis/electrophysiology) probes were placed in rats following experimental fluid percussion brain injuries, and in a series of severely head-injured human patients. Electrical activity (cell firing, EEG) was monitored concurrently with microdialysis sampling of extracellular glutamate, glucose and lactate. Electrophysiological parameters (firing rate, serial correlation, field potential occurrences) were analyzed offline and compared to dialysate concentrations. In rats, these probes demonstrated an injury-induced suppression of neuronal firing (from a control level of 2.87 to 0.41 spikes/sec postinjury), which was associated with increases in extracellular glutamate and lactate, and decreases in glucose levels. When placed in human patients, the probes detected sparse and slowly firing cells (mean = 0.21 spike/sec), with most units (70%) exhibiting a lack of serial correlation in the spike train. In some patients, spontaneous field potentials were observed, suggesting synchronously firing neuronal populations. In both the experimental and clinical application, the addition of the recording electrode did not appreciably affect the performance of the microdialysis probe. The results suggest that this technique provides a functional monitoring capability which cannot be obtained when electrophysiology is measured with surface or epidural EEG alone.