265 resultados para EQUINE ARTICULAR-CARTILAGE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poly(ɛ)caprolactone scaffolds have been electrospun directly into an auricular shaped conductive mould. Bovine chondrocytes were harvested from articular cartilage and seeded onto 16 of the produced scaffolds, which received either an ethanol (group A) or a plasma treatment (group B) for sterilisation before seeding. The seeded scaffolds were cultured for 3 weeks in vitro and analysed with regard to total DNA and GAG content as well as the expression of AGG, COL1, COL2, MMP3 and MMP13. Rapid cell proliferation and GAG accumulation was observed until week 2. However, total DNA and GAG content decreased again in week 3. qPCR data shows a slight increase in the expression of anabolic genes and a slight decrease for the catabolic genes, with a significant difference between the groups A and B only for COL2 and MMP13.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scaphoid is the most frequently fractured carpal bone. When investigating fixation stability, which may influence healing, knowledge of forces and moments acting on the scaphoid is essential. The aim of this study was to evaluate cartilage contact forces acting on the intact scaphoid in various functional wrist positions using finite element modeling. A novel methodology was utilized as an attempt to overcome some limitations of earlier studies, namely, relatively coarse imaging resolution to assess geometry, assumption of idealized cartilage thicknesses and neglected cartilage pre-stresses in the unloaded joint. Carpal bone positions and articular cartilage geometry were obtained independently by means of high resolution CT imaging and incorporated into finite element (FE) models of the human wrist in eight functional positions. Displacement driven FE analyses were used to resolve inter-penetration of cartilage layers, and provided contact areas, forces and pressure distribution for the scaphoid bone. The results were in the range reported by previous studies. Novel findings of this study were: (i) cartilage thickness was found to be heterogeneous for each bone and vary considerably between carpal bones; (ii) this heterogeneity largely influenced the FE results and (iii) the forces acting on the scaphoid in the unloaded wrist were found to be significant. As major limitations, accuracy of the method was found to be relatively low, and the results could not be compared to independent experiments. The obtained results will be used in a following study to evaluate existing and recently developed screws used to fix scaphoid fractures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE To investigate the potential of doxycycline to reduce stromelysin and inducible nitric oxide synthase (iNOS) activity in dogs with osteoarthritis (OA) secondary to spontaneous cranial cruciate ligament (CCL) rupture. STUDY DESIGN Prospective, clinical study. ANIMALS Eighty-one dogs with OA secondary to CCL rupture and 54 normal dogs. METHODS Dogs with OA secondary to CCL rupture were divided into 2 groups before surgery. The Doxy-CCl group received 3 to 4 mg/kg doxycycline orally every 24 hours for 7 to 10 days (n = 35). The CCL group received no treatment (n = 46). Synovial fluid, articular cartilage, synovial membrane, and CCL samples were collected during surgery (Doxy-CCL group and CCL group) or immediately after euthanasia from healthy dogs (control group). Synovial fluid samples were examined cytologically. Total nitric oxide (NOt) concentrations were measured in the supernatant of explant cultures of all tissue samples, and stromelysin activity was measured in the supernatant of explant cultures of cartilage. RESULTS NOt concentrations measured in cartilage were significantly lower in the Doxy-CCL group than in the CCL group, but were not different from those measured in the control group. Doxycycline treatment did not have a significant effect on cartilage stromelysin levels. CONCLUSION The findings in this study indicate that doxycycline inhibits NO production in cartilage in dogs with CCL rupture. CLINICAL RELEVANCE Doxycycline may have a role in the treatment of canine OA by inhibiting NO production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE To measure nitric oxide (NO) concentrations in serum, urine, and synovial fluid (SF) of dogs with naturally occurring cranial cruciate ligament (CCL) rupture and normal dogs, and to compare these with clinical and histologic changes of osteoarthritis (OA). STUDY DESIGN Prospective clinical study including 2 groups of animals selected from the hospital population. ANIMALS Forty-three dogs (CCL group) with OA secondary to CCL rupture; 30 healthy dogs (control group) without CCL rupture. METHODS Serum, urine, and SF were collected before and during surgery in the CCL group or immediately after euthanasia in the control group. Articular cartilage and synovial membrane tissue specimens were prepared for routine histologic examination. The stable end products of NO, total nitrite and nitrate (NOt) activity, were measured in body fluids and compared with macroscopic and histologic degrees of OA. Urinary NOt concentration was compared with urinary creatinine concentration and stated as urinary NOt:creatinine ratio (UNCR). RESULTS-SF NOt concentrations were not significantly different between the 2 groups. Serum NOt concentrations (45.6 vs 28.9 micromol/L; P =.042) and the UNCR (0.007 vs 0.004; P =.035) were significantly higher in dogs of the CCL group compared with the control population. An association between UNCR and histologic and macroscopical OA grades could be demonstrated. CONCLUSION UNCR might be a useful indicator of nitrite and nitrate production and, therefore, osteoarthritic changes in joints. CLINICAL RELEVANCE UNCR could be used as a tool to evaluate the NOt production by joint tissues over time and might therefore provide a method of evaluating the effects of drugs in the control of osteoarthritis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

No single processing technique is capable of optimally preserving each and all of the structural entities of cartilaginous tissue. Hence, the choice of methodology must necessarily be governed by the nature of the component that is targeted for analysis, for example, fibrillar collagens or proteoglycans within the extracellular matrix, or the chondrocytes themselves. This article affords an insight into the pitfalls that are to be encountered when implementing the available techniques and how best to circumvent them. Adult articular cartilage is taken as a representative pars pro toto of the different bodily types. In mammals, this layer of tissue is a component of the synovial joints, wherein it fulfills crucial and diverse biomechanical functions. The biomechanical functions of articular cartilage have their structural and molecular correlates. During the natural course of postnatal development and after the onset of pathological disease processes, such as osteoarthritis, the tissue undergoes structural changes which are intimately reflected in biomechanical modulations. The fine structural intricacies that subserve the changes in tissue function can be accurately assessed only if they are faithfully preserved at the molecular level. For this reason, a careful consideration of the tissue-processing technique is indispensable. Since, as aforementioned, no single methodological tool is capable of optimally preserving all constituents, the approach must be pre-selected with a targeted structure in view. Guidance in this choice is offered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e(-/-)) do not exhibit an obviously abnormal cartilaginous phenotype. We therefore analyzed embryogenesis of Tfap2e(-/-) mice to elucidate potential transient abnormalities that provide information on the influence of AP-2ε on skeletal development. In a second part, we aimed to define potential influences of AP-2ε on articular cartilage function and gene expression, as well as on OA progression, in adult mice. METHODS Murine embryonic development was accessed via in situ hybridization, measurement of skeletal parameters and micromass differentiation of mesenchymal cells. To reveal discrepancies in articular cartilage of adult wild-type (WT) and Tfap2e(-/-) mice, light and electron microscopy, in vitro culture of cartilage explants, and quantification of gene expression via real-time PCR were performed. OA was induced via surgical destabilization of the medial meniscus in both genotypes, and disease progression was monitored on histological and molecular levels. RESULTS Only minor differences between WT and embryos deficient for AP-2ε were observed, suggesting that redundancy mechanisms effectively compensate for the loss of AP-2ε during skeletal development. Surprisingly, though, we found matrix metalloproteinase 13 (Mmp13), a major mediator of cartilage destruction, to be significantly upregulated in articular cartilage of adult Tfap2e(-/-) mice. This finding was further confirmed by increased Mmp13 activity and extracellular matrix degradation in Tfap2e(-/-) cartilage explants. OA progression was significantly enhanced in the Tfap2e(-/-) mice, which provided evidence for in vivo relevance. This finding is most likely attributable to the increased basal Mmp13 expression level in Tfap2e(-/-) articular chondrocytes that results in a significantly higher total Mmp13 expression rate during OA as compared with the WT. CONCLUSIONS We reveal a novel role of AP-2ε in the regulation of gene expression in articular chondrocytes, as well as in OA development, through modulation of Mmp13 expression and activity.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) provide an important source of pluripotent cells for musculoskeletal tissue repair. This study examined the impact of MSC implantation on cartilage healing characteristics in a large animal model. Twelve full-thickness 15-mm cartilage lesions in the femoropatellar articulations of six young mature horses were repaired by injection of a self-polymerizing autogenous fibrin vehicle containing mesenchymal stem cells, or autogenous fibrin alone in control joints. Arthroscopic second look and defect biopsy was obtained at 30 days, and all animals were euthanized 8 months after repair. Cartilage repair tissue and surrounding cartilage were assessed by histology, histochemistry, collagen type I and type II immunohistochemistry, collagen type II in situ hybridization, and matrix biochemical assays. Arthroscopic scores for MSC-implanted defects were significantly improved at the 30-day arthroscopic assessment. Biopsy showed MSC-implanted defects contained increased fibrous tissue with several defects containing predominantly type II collagen. Long-term assessment revealed repair tissue filled grafted and control lesions at 8 months, with no significant difference between stem cell-treated and control defects. Collagen type II and proteoglycan content in MSC-implanted and control defects were similar. Mesenchymal stem cell grafts improved the early healing response, but did not significantly enhance the long-term histologic appearance or biochemical composition of full-thickness cartilage lesions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This pilot study defines the feasibility of cartilage assessment in symptomatic femoroacetabular impingement patients using intra-articular delayed gadolinium-enhanced MRI of cartilage (ia-dGEMRIC). Nine patients were scanned preliminary to study the contrast infiltration process into hip joint cartilage. Twenty-seven patients with symptomatic femoroacetabular impingement were subsequently scanned with intra-articular delayed gadolinium-enhanced MRI of cartilage. These T(1) findings were correlated to morphological findings. Zonal variations were studied. This pilot study demonstrates a significant difference between the pre- and postcontrast T(1) values (P < 0.001) remaining constant for 45 min. We noted higher mean T(1) values in morphologically normal-appearing cartilage than in damaged cartilage, which was statistically significant for all zones except the anterior-superior zone. Intraobserver (0.972) and interobserver correlation coefficients (0.933) were statistically significant. This study outlines the feasibility of intra-articular delayed gadolinium-enhanced MRI of cartilage for assessment of cartilage changes in patients with femoroacetabular impingement. It can also define the topographic extent and differing severities of cartilage damage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose was to investigate the in vivo effects of unloading and compression on T1-Gd relaxation times in healthy articular knee cartilage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study we investigated whether expanded goat chondrocytes have the capacity to generate cartilaginous tissues with biochemical and biomechanical properties improving with time in culture. Goat chondrocytes were expanded in monolayer with or without combinations of FGF-2, TGF-beta1, and PDGFbb, and the postexpansion chondrogenic capacity assessed in pellet cultures. Expanded chondrocytes were also cultured for up to 6 weeks in HYAFF-M nonwoven meshes or Polyactive foams, and the resulting cartilaginous tissues were assessed histologically, biochemically, and biomechanically. Supplementation of the expansion medium with FGF-2 increased the proliferation rate of goat chondrocytes and enhanced their postexpansion chondrogenic capacity. FGF-2-expanded chondrocytes seeded in HYAFF-M or Polyactive scaffolds formed cartilaginous tissues with wet weight, glycosaminoglycan, and collagen content, increasing from 2 days to 6 weeks culture (up to respectively 2-, 8-, and 41-fold). Equilibrium and dynamic stiffness measured in HYAFF M-based constructs also increased with time, up to, respectively, 1.3- and 16-fold. This study demonstrates the feasibility to engineer goat cartilaginous tissues at different stages of development by varying culture time, and thus opens the possibility to test the effect of maturation stage of engineered cartilage on the outcome of cartilage repair in orthotopic goat models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the interconnection between the processes of proliferation, dedifferentiation, and intrinsic redifferentiation (chondrogenic) capacities of human articular chondrocyte (HAC), and to identify markers linking HAC dedifferentiation status with their chondrogenic potential. Cumulative population doublings (PD) of HAC expanded in monolayer culture were determined, and a threshold range of 3.57-4.19 PD was identified as indicative of HAC loss of intrinsic chondrogenic capacity in pellets incubated without added chondrogenic factors. While several specific gene and surface markers defined early HAC dedifferentiation process, no clear correlation with the loss of intrinsic chondrogenic potential could be established. CD90 expression during HAC monolayer culture revealed two subpopulations, with sorted CD90-negative cells showing lower proliferative capacity and higher chondrogenic potential compared to CD90-positive cells. Although these data further validated PD as critical for in vitro chondrogenesis, due to the early shift in expression, CD90 could not be considered for predicting chondrogenic potential of HAC expanded for several weeks. In contrast, an excellent mathematically modeled correlation was established between PD and the decline of HAC expressing the intracellular marker S100, providing a direct link between the number of cell divisions and dedifferentiation/loss of intrinsic chondrogenic capacity. Based on the dynamics of S100-positive HAC during expansion, we propose asymmetric cell division as a potential mechanism of HAC dedifferentiation, and S100 as a marker to assess chondrogenicity of HAC during expansion, of potential value for cell-based cartilage repair treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate whether T1-mapping of hip joint with intra-articular delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (ia-dGEMRIC) is comparable to the already established intravenous (iv)-technique for assessing different grades of cartilage degeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increasing advances in hip joint preservation surgery, accurate diagnosis and assessment of femoral head and acetabular cartilage status is becoming increasingly important. Magnetic resonance imaging (MRI) of the hip does present technical difficulties. The fairly thin cartilage lining necessitates high image resolution and high contrast-to-noise ratio (CNR). With MR arthrography (MRA) using intraarticular injected gadolinium, labral tears and cartilage clefts may be better identified through the contrast medium filling into the clefts. However, the ability of MRA to detect varying grades of cartilage damage is fairly limited and early histological and biochemical changes in the beginning of osteoarthritis (OA) cannot be accurately delineated. Traditional MRI thus lacks the ability to analyze the biological status of cartilage degeneration. The technique of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) is sensitive to the charge density of cartilage contributed by glycosaminoglycans (GAGs), which are lost early in the process of OA. Therefore, the dGEMRIC technique has a potential to detect early cartilage damage that is obviously critical for decision-making regarding time and extent of intervention for joint-preservation. In the last decade, cartilage imaging with dGEMRIC has been established as an accurate and reliable tool for assessment of cartilage status in the knee and hip joint.This review outlines the current status of dGEMRIC for assessment of hip joint cartilage. Practical modifications of the standard technique including three-dimensional (3D) dGEMRIC and dGEMRIC after intra-articular gadolinium instead of iv-dGEMRIC will also be addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibroblast-like cells isolated from peripheral blood of human, canine, guinea pig, and rat have been demonstrated to possess the capacity to differentiate into several mesenchymal lineages. The aim of this work was to investigate the possibility of isolating pluripotent precursor cells from equine peripheral blood and compare them with equine bone marrow-derived mesenchymal stem cells. Human mesenchymal stem cells (MSCs) were used as a control for cell multipotency assessment. Venous blood (n = 33) and bone marrow (n = 5) were obtained from adult horses. Mononuclear cells were obtained by Ficoll gradient centrifugation and cultured in monolayer, and adherent fibroblast-like cells were tested for their differentiation potential. Chondrogenic differentiation was performed in serum-free medium in pellet cultures as a three-dimensional model, whereas osteogenic and adipogenic differentiation were induced in monolayer culture. Evidence for differentiation was made via biochemical, histological, and reverse transcription-polymerase chain reaction evaluations. Fibroblast-like cells were observed on day 10 in 12 out of 33 samples and were allowed to proliferate until confluence. Equine peripheral blood-derived cells had osteogenic and adipogenic differentiation capacities comparable to cells derived from bone marrow. Both cell types showed a limited capacity to produce lipid droplets compared to human MSCs. This result may be due to the assay conditions, which are established for human MSCs from bone marrow and may not be optimal for equine progenitor cells. Bone marrow-derived equine and human MSCs could be induced to develop cartilage, whereas equine peripheral blood progenitors did not show any capacity to produce cartilage at the histological level. In conclusion, equine peripheral blood-derived fibroblast-like cells can differentiate into distinct mesenchymal lineages but have less multipotency than bone marrow-derived MSCs under the conditions used in this study.