64 resultados para Differential allelic expression
Resumo:
AIM: Chemical decontamination increases the availability of bone grafts; however, it is unclear whether antiseptic processing changes the biological activity of bone. MATERIALS AND METHODS: Bone chips were incubated with 4 different antiseptic solutions including (1) povidone-iodine (0.5%), (2) chlorhexidine diguluconate (0.2%), (3) hydrogen peroxide (1%) and (4) sodium hypochlorite (0.25%). After 10 minutes of incubation, changes in the capacity of the bone-conditioned medium to modulate gene expression of gingival fibroblasts was investigated. RESULTS: Conditioned medium obtained from freshly prepared bone chips increased the expression of TGF-β target genes interleukin 11 (IL11), proteoglycan4 (PRG4), NADPH oxidase 4 (NOX4), and decreased the expression of adrenomedullin (ADM), and pentraxin 3 (PTX3) in gingival fibroblasts. Incubation of bone chips with 0.2% chlorhexidine, followed by vigorously washing resulted in a bone-conditioned medium with even higher expression of IL11, PRG4, and NOX4. These findings were also found with a decrease in cell viability and an activation of apoptosis signaling. Chlorhexidine alone, at low concentrations, increased IL11, PRG4 and NOX4 expression, independent of the TGF-β receptor I kinase activity. In contrast, 0.25% sodium hypochlorite almost entirely abolished the activity of bone-conditioned medium, while the other two antiseptic solutions, 1% hydrogen peroxide and 0.5% povidone-iodine, had relatively no impact, respectively. CONCLUSION: These in vitro findings demonstrate that incubation of bone chips with chlorhexidine differentially affects the activity of the respective bone-conditioned medium compared to the other antiseptic solutions. The data further suggest that the main effects are caused by chlorhexidine remaining in the bone-conditioned medium after repeated washing of the bone chips. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved. KEYWORDS: Autografts; TGF-β; antiseptic solution; bone; bone conditioned medium; bone supernatant; chlorhexidine; hydrogen peroxide; povidone-iodine; sodium hypochlorite
Resumo:
Abstract AIM: To investigate the inflammatory response of dental pulp fibroblasts and the respective explants to whole saliva. METHODOLOGY: Explants from human and porcine dental pulp tissue and isolated dental pulp fibroblasts were used to investigate the inflammatory response to sterile saliva. Cytokine and chemokine expression was assessed by RT-PCR. Western blot analysis and pharmacologic inhibitors were used to determine the involvement of signalling pathways. RESULTS: Dental pulp explants of human and porcine origin exposed to human saliva exhibited no major changes of IL-6 and IL-8 mRNA expression (P > 0.05). In contrast, isolated porcine and human dental pulp fibroblasts, when stimulated with human saliva, exhibited a vastly increased expression of IL-6 and IL-8 mRNA (P < 0.05). In pulp fibroblasts, saliva also increased the expression of other cytokines and chemokines via activation of NFkappaB, ERK and p38 signalling. Notably, a significantly reduced inflammatory response was elicited when pulp fibroblasts were transiently exposed to saliva. CONCLUSIONS: Saliva has a potential impact on inflammation of dental pulp fibroblasts in vitro but not when cells are embedded in the intrinsic extracellular matrix of the explant tissue.
Resumo:
The biochemical and molecular basis of chlorophyll (Chl) catabolism in bananas was investigated during ripening at 20°C and at an elevated temperature (35°C) where degreening is inhibited. Biochemical analysis showed that Chl breakdown products could be isolated from fruit ripened at both temperatures. The coloured breakdown products, chlorophyllide and pheophorbide, were not detected at any stage of ripening in the two treatments; however, a non-fluorescent Chl catabolite accumulated to a higher concentration at 20 than at 35°C. To investigate the ripening-related gene expression associated with these changes, a cDNA library was generated from the peel of fruit ripened at 20°C. Differential screening of this library produced 20 non-redundant families of clones including those encoding enzymes involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation and other metabolic events. The expression of these genes was followed by northern analysis in fruit ripened at 20 and 35°C.
Resumo:
Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs.