88 resultados para Delta 14C


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spinal muscular atrophy (SMA) is a childhood fatal motor neuron disease caused by mutations in the Survival Motor Neuron 1 (SMN1) gene, currently without effective treatment. One possible therapeutic approach is the use of antisense oligonucleotides (ASOs) to redirect the splicing of a paralogous gene, SMN2, to increase the production of functional SMN protein. A range of ASOs with different chemical properties is suitable for these applications, including a morpholino (MO) variant, which has a particularly excellent safety, and efficacy profile. We used a 25- nt MO oligomer sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D(-10-34)) with superior efficacy to previously described sequences also in transgenic SMA Δ7 mice. The combined local and systemic administration of MO (bare or conjugated to octa-guanidine) is necessary to increase full-length SMN expression, leading to robust neuropathological features improvement and survival rescue. Additionally, several snRNA levels that are dysregulated in SMA mice could be restored by MO treatment. These results demonstrate that MO therapy is efficacious and can result in phenotypic rescue. These data provide important insights for the development of therapeutic strategies in SMA patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An HPLC-DAD method for the quantitative analysis of Δ(9)-tetrahydrocannabinol (THC), Δ(9)-tetrahydrocannabinolic acid-A (THCA-A), cannabidiol (CBD), and cannabinol (CBN) in confiscated cannabis products has been developed, fully validated and applied to analyse seized cannabis products. For determination of the THC content of plant material, this method combines quantitation of THCA-A, which is the inactive precursor of THC, and free THC. Plant material was dried, homogenized and extracted with methanol by ultrasonication. Chromatographic separation was achieved with a Waters Alliance 2695 HPLC equipped with a Merck LiChrospher 60 RP-Select B (5μm) precolumn and a Merck LiChroCart 125-4 LiChrospher 60 RP-Select B (5μm) analytical column. Analytes were detected and quantified using a Waters 2996 photo diode array detector. This method has been accepted by the public authorities of Switzerland (Bundesamt für Gesundheit, Federal Office of Public Health), and has been used to analyse 9092 samples since 2000. Since no thermal decarboxylation of THCA-A occurs, the method is highly reproducible for different cannabis materials. Two calibration ranges are used, a lower one for THC, CBN and CBD, and a higher one for THCA-A, due to its dominant presence in fresh plant material. As provider of the Swiss proficiency test, the robustness of this method has been tested over several years, and homogeneity tests even in the low calibration range (1%) show high precision (RSD≤4.3%, except CBD) and accuracy (bias≤4.1%, except CBN).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The University of Bern has set up the new Laboratory for the Analysis of Radiocarbon with AMS (LARA) equipped with an accelerator mass spectrometer (AMS) MICADAS (MIni CArbon Dating System) to continue its long history of 14C analysis based on conventional counting. The new laboratory is designated to provide routine 14C dating for archaeology, climate research, and other disciplines at the University of Bern and to develop new analytical systems coupled to the gas ion source for 14C analysis of specific compounds or compound classes with specific physical properties. Measurements of reference standards and wood samples dated by dendrochronology demonstrate the quality of the 14C analyses performed at the new laboratory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reconstruct the timing of ice flow reconfiguration and deglaciation of the Central Alpine Gotthard Pass, Switzerland, using cosmogenic 10Be and in situ14C surface exposure dating. Combined with mapping of glacial erosional markers, exposure ages of bedrock surfaces reveal progressive glacier downwasting from the maximum LGM ice volume and a gradual reorganization of the paleoflow pattern with a southward migration of the ice divide. Exposure ages of ∼16–14 ka (snow corrected) give evidence for continuous early Lateglacial ice cover and indicate that the first deglaciation was contemporaneous with the decay of the large Gschnitz glacier system. In agreement with published ages from other Alpine passes, these data support the concept of large transection glaciers that persisted in the high Alps after the breakdown of the LGM ice masses in the foreland and possibly decayed as late as the onset of the Bølling warming. A younger group of ages around ∼12–13 ka records the timing of deglaciation following local glacier readvance during the Egesen stadial. Glacial erosional features and the distribution of exposure ages consistently imply that Egesen glaciers were of comparatively small volume and were following a topographically controlled paleoflow pattern. Dating of a boulder close to the pass elevation gives a minimum age of 11.1 ± 0.4 ka for final deglaciation by the end of the Younger Dryas. In situ14C data are overall in good agreement with the 10Be ages and confirm continuous exposure throughout the Holocene. However, in situ14C demonstrates that partial surface shielding, e.g. by snow, has to be incorporated in the exposure age calculations and the model of deglaciation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of 14C in the organic carbon (OC) and elemental carbon (EC) fractions, respectively, of fine aerosol particles bear the potential to apportion anthropogenic and biogenic emission sources. For this purpose, the system THEODORE (two-step heating system for the EC/OC determination of radiocarbon in the environment) was developed. In this device, OC and EC are transformed into carbon dioxide in a stream of oxygen at 340 and 650 �C, respectively, and reduced to filamentous carbon. This is the target material for subsequent accelerator mass spectrometry (AMS) 14C measurements, which were performed on sub-milligram carbon samples at the PSI/ETH compact 500 kV AMS system. Quality assurance measurements of SRM 1649a, Urban Dust, yielded a fraction of modern fM in total carbon (TC) of 0.522 ±0.018 (n ¼ 5, 95% confidence level) in agreement with reported values. The results for OC and EC are 0.70± 0.05 (n ¼ 3) and 0.066 ± 0.020 (n ¼ 4), respectively.