126 resultados para DISEASE GENE SH2D1A


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Rheumatoid arthritis (RA) usually improves during pregnancy and recurs postpartum. Fetal cells and cell-free DNA reach the maternal circulation during normal pregnancy. The present study investigated dynamic changes in levels of fetal DNA in serum from women with RA and inflammatory arthritis during and after pregnancy to test the hypothesis that the levels of circulating fetal DNA correlate with arthritis improvement. METHODS: Twenty-five pregnant patients were prospectively studied. A real-time quantitative polymerase chain reaction panel targeting unshared, paternally transmitted HLA sequences, a Y chromosome-specific sequence, or an insertion sequence within the glutathione S-transferase M1 gene was used to measure cell-free fetal DNA. Results were expressed as fetal genomic equivalents per milliliter (gE/ml) of maternal serum. Physical examinations were conducted during and after pregnancy. RESULTS: Levels of fetal DNA in women with improvement in or remission of arthritis were higher than those in women with active disease, especially in the third trimester. Overall, an inverse relationship between serum fetal DNA levels and disease activity was observed (P < 0.001). Serum fetal DNA increased with advancing gestation, reaching median levels of 24 gE/ml (range 0-334), 61 gE/ml (range 0-689), and 199 gE/ml (range 0-2,576) in the first, second, and third trimesters, respectively, with fetal DNA clearance observed postpartum. Arthritis improvement was initially noted in the first trimester for most patients, increased further or was sustained with advancing gestation, and was active postpartum. CONCLUSION: Changes in serum fetal DNA levels correlated with arthritis improvement during pregnancy and recurrence postpartum. Immunologic mechanisms by which pregnancy might modulate RA activity are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Pneumococcal meningitis is associated with high mortality (approximately 30%) and morbidity. Up to 50% of survivors are affected by neurological sequelae due to a wide spectrum of brain injury mainly affecting the cortex and hippocampus. Despite this significant disease burden, the genetic program that regulates the host response leading to brain damage as a consequence of bacterial meningitis is largely unknown.We used an infant rat model of pneumococcal meningitis to assess gene expression profiles in cortex and hippocampus at 22 and 44 hours after infection and in controls at 22 h after mock-infection with saline. To analyze the biological significance of the data generated by Affymetrix DNA microarrays, a bioinformatics pipeline was used combining (i) a literature-profiling algorithm to cluster genes based on the vocabulary of abstracts indexed in MEDLINE (NCBI) and (ii) the self-organizing map (SOM), a clustering technique based on covariance in gene expression kinetics. RESULTS: Among 598 genes differentially regulated (change factor > or = 1.5; p < or = 0.05), 77% were automatically assigned to one of 11 functional groups with 94% accuracy. SOM disclosed six patterns of expression kinetics. Genes associated with growth control/neuroplasticity, signal transduction, cell death/survival, cytoskeleton, and immunity were generally upregulated. In contrast, genes related to neurotransmission and lipid metabolism were transiently downregulated on the whole. The majority of the genes associated with ionic homeostasis, neurotransmission, signal transduction and lipid metabolism were differentially regulated specifically in the hippocampus. Of the cell death/survival genes found to be continuously upregulated only in hippocampus, the majority are pro-apoptotic, while those continuously upregulated only in cortex are anti-apoptotic. CONCLUSION: Temporal and spatial analysis of gene expression in experimental pneumococcal meningitis identified potential targets for therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear receptors (NR), such as constitutive androstane receptor (CAR), pregnane X receptor (PXR) and peroxisome proliferator-associated receptors alpha and gamma (PPARalpha, PPARgamma) are mediators of inflammation and may be involved in inflammatory bowel disease (IBD) and food responsive diarrhea (FRD) of dogs. The present study compared mRNA abundance of NR and NR target genes [multi drug-resistance gene-1 (MDR1), multiple drug-resistance-associated proteins (MRD2, MRD3), cytochrome P450 (CYP3A12), phenol-sulfating phenol sulfotransferase (SULT1A1) and glutathione-S-transferase (GST A3-3)] in biopsies obtained from duodenum and colon of dogs with IBD and FRD and healthy control dogs (CON; n=7 per group). Upon first presentation of dogs, mRNA levels of PPARalpha, PPARgamma, CAR, PXR and RXRalpha in duodenum as well as PPARgamma, CAR, PXR and RXRalpha in colon were not different among groups (P>0.10). Although mRNA abundance of PPARalpha in colon of dogs with FRD was similar in both IBD and CON (P>0.10), PPARalpha mRNA abundance was higher in IBD than CON (P<0.05). Levels of mRNA of MDR1 in duodenum were higher in FRD than IBD (P<0.05) or CON (P<0.001). Compared with CON, abundances of mRNA for MRP2, CYP3A12 and SULT1A1 were higher in both FRD and IBD than CON (P<0.05). Differences in mRNA levels of PPARalpha and MRP2 in colon and MDR1, MRP2, CYP3A12 and SULT1A1 in duodenum may be indicative for enteropathy in FRD and (or) IBD dogs relative to healthy dogs. More importantly, increased expression of MDR1 in FRD relative to IBD in duodenum may be a useful diagnostic marker to distinguish dogs with FRD from dogs with IBD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Anaplasma phagocytophilum (formerly known as the human granulocytic ehrlichia, Ehrlichia equi and Ehrlichia phagocytophila) is an obligate intracellular organism causing clinical disease in humans and various species of domestic animals. OBJECTIVES: The objectives of this investigation were to sequence and clone the major surface protein 5 (MSP5) of A phagocytophilum and to evaluate the suitability of this antigen in the serologic diagnosis of anaplasmosis in humans and dogs. METHODS: The msp5 gene of A phagocytophilum was sequenced, cloned, and expressed in Escherichia coli. The predicted amino acid sequence homology of the various MSP5/major antigenic protein 2 orthologs was compared among various Anaplasma and Ehrlichia species. Recombinant MSP5 of A phagocytophilum was used in an ELISA to detect antibodies in serum samples from humans and dogs infected with the organism. RESULTS: Serum samples from 104 individuals previously diagnosed with A phagocytophilum infection, as well as samples from clinically healthy humans, were tested. In addition, multiple samples from 4 dogs experimentally infected with 2 different geographic isolates of A phagocytophilum and 5 dogs naturally infected with a Swiss isolate were tested using ELISA. Using this group of immunofluorescent antibody test-positive and immunofluorescent antibody test-negative samples, we found the overall agreement between assays to be >90%. CONCLUSIONS: These results indicate that recombinant MSP5 has potential for use as a diagnostic test antigen to detect infection with A phagocytophilum in both dogs and humans. However, sequence similarities among orthologs of MSP5 in related species of anaplasma and ehrlichia suggest that cross-reactivity among these pathogens is likely if the entire peptide is used as a test antigen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: Chlamydia has been associated with autoimmune diseases, but a link between chlamydial infection and the aetiopathogenesis of inflammatory bowel disease (IBD) remains controversial. In this study we assessed the relationship between chlamydial infection and IBD, as evidenced by serological measurement and DNA analysis of mucosal biopsy specimens. PATIENTS AND METHODS: The sera of 78 patients with Crohn's disease (CD), 24 patients with ulcerative colitis (UC), 73 healthy family members, and 20 healthy controls were tested for anti-C. pneumoniae IgG titres. A subgroup consisting of 13 UC and 39 CD patients was screened for the presence of chlamydial DNA on 42 inflamed versus 30 non-inflamed biopsy specimens and for mutations of their NOD2/CARD15 gene. RESULTS: Anti-C. pneumoniae IgG antibodies were found in the sera of 32 (41%) patients with CD, 11 (46%) patients with UC, 35 (48%) of unaffected family members, and nine (45%) unrelated healthy controls. Thirty-five percent of the control, 18% CD and 24% UC biopsy specimens contained C. pneumoniae DNA. In CD, however, C. pneumoniae DNA was significantly more frequently found in inflamed (27%) versus non-inflamed (8%) biopsy specimens (P < 0.05, Fisher's exact test). The frequencies of NOD2/CARD15 mutations were 33% for CD patients with C. pneumoniae DNA compared to 47% for CD patients without C. pneumoniae DNA. CONCLUSION: We found no marked differences in respect to anti-C. pneumoniae serum IgG or C. pneumoniae DNA between healthy controls and patients with IBD. However, in CD patients, inflamed tissue specimens contained significantly more likely C. pneumoniae DNA compared with biopsies from unaffected areas. Thus C. pneumoniae is unlikely to be of pathogenic importance in IBD while it may still influence local clinical manifestations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been implicated in wound-healing processes of various tissues. However, it is not known whether HB-EGF may represent a factor implicated in overstimulated wound-healing processes of the retina during proliferative retinopathies. Therefore, we investigated whether human retinal pigment epithelial (RPE) cells, which are crucially involved in proliferative retinopathies, express and respond to HB-EGF. RPE cells express mRNAs for various members of the EGF-related growth factor family, among them for HB-EGF, as well as for the EGF receptors ErbB1, -2, -3, and -4. The gene expression of HB-EGF is stimulated in the presence of transforming and basic fibroblast growth factors and by oxidative stress and is suppressed during chemical hypoxia. Exogenous HB-EGF stimulates proliferation and migration of RPE cells and the gene and protein expression of the vascular endothelial growth factor (VEGF). HB-EGF activates at least three signal transduction pathways in RPE cells including the extracellular signal-regulated kinases (involved in the proliferation-stimulating action of HB-EGF), p38 (mediates the effects on chemotaxis and secretion of VEGF), and the phosphatidylinositol-3 kinase (necessary for the stimulation of chemotaxis). In epiretinal membranes of patients with proliferative retinopathies, HB-EGF immunoreactivity was partially colocalized with the RPE cell marker, cytokeratins; this observation suggests that RPE cell-derived HB-EGF may represent one factor that drives the uncontrolled wound-healing process of the retina. The stimulating effect on the secretion of VEGF may suggest that HB-EGF is also implicated in the pathological angiogenesis of the retina.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is generally agreed that the mechanical environment of intervertebral disc cells plays an important role in maintaining a balanced matrix metabolism. The precise mechanism by which the signals are transduced into the cells is poorly understood. Osmotic changes in the extracellular matrix (ECM) are thought to be involved. Current in-vitro studies on this topic are mostly short-term and show conflicting data on the reaction of disc cells subjected to osmotic changes which is partially due to the heterogenous and often substantially-reduced culture systems. The aim of the study was therefore to investigate the effects of cyclic osmotic loading for 4 weeks on metabolism and matrix gene expression in a full-organ intervertebral disc culture system. Intervertebral disc/endplate units were isolated from New Zealand White Rabbits and cultured either in iso-osmotic media (335 mosmol/kg) or were diurnally exposed for 8 hours to hyper-osmotic conditions (485 mosmol/kg). Cell viability, metabolic activity, matrix composition and matrix gene expression profile (collagen types I/II and aggrecan) were monitored using Live/Dead cell viability assay, tetrazolium reduction test (WST 8), proteoglycan and DNA quantification assays and quantitative PCR. The results show that diurnal osmotic stimulation did not have significant effects on proteoglycan content, cellularity and disc cell viability after 28 days in culture. However, hyperosmolarity caused increased cell death in the early culture phase and counteracted up-regulation of type I collagen gene expression in nucleus and annulus cells. Moreover, the initially decreased cellular dehydrogenase activity recovered with osmotic stimulation after 4 weeks and aggrecan gene down-regulation was delayed, although the latter was not significant according to our statistical criteria. In contrast, collagen type II did not respond to the osmotic changes and was down-regulated in both groups. In conclusion, diurnal hyper-osmotic stimulation of a whole-organ disc/endplate culture partially inhibits a matrix gene expression profile as encountered in degenerative disc disease and counteracts cellular metabolic hypo-activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Integration of high-risk papillomavirus DNA has been considered an important step in oncogenic progression to cervical carcinoma. Disruption of the human papillomavirus (HPV) genome within the E2 gene is frequently a consequence. This study investigated the influence of episomal viral DNA on outcome in patients with advanced cervical cancer treated with primary radiotherapy. METHODS AND MATERIALS: Paraffin-embedded biopsies of 82 women with locally advanced cervical cancer could be analyzed for HPV infection by multiplex polymerase chain reaction (PCR) by use of SPF1/2 primers. E2-gene intactness of HPV-16-positive samples was analyzed in 3 separate amplification reactions by use of the E2A, E2B, E2C primers. Statistical analyses (Kaplan-Meier method; log-rank test) were performed for overall survival (OS), disease-free survival (DFS), local progression-free survival (LPFS), and distant metastases-free survival (DMFS). RESULTS: Sixty-one (75%) of 82 carcinomas were HPV positive, 44 of them for HPV-16 (72%). Seventeen of the 44 HPV-16-positive tumors (39%) had an intact E2 gene. Patients with a HPV-16-positive tumor and an intact E2 gene showed a trend for a better DFS (58% vs. 38%, p = 0.06) compared with those with a disrupted E2 gene. A nonsignificant difference occurred regarding OS (87% vs. 66%, p = 0.16) and DMFS (57% vs. 48%, p = 0.15). CONCLUSION: E2-gene status may be a promising new target, but more studies are required to elucidate the effect of the viral E2 gene on outcome after radiotherapy in HPV-positive tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is an autosomal recessive renal tubular disorder characterized by renal magnesium wasting, hypercalciuria, advanced nephrocalcinosis and progressive renal failure. Mutations in the paracellin-1 (CLDN16) gene have been defined as the underlying genetic defect. The tubular disorders and progression in renal failure are usually resistant to magnesium substitution and hydrochlorothiazide therapy, but hypomagnesemia may improve with advanced renal insufficiency. We present a patient with a homozygous truncating CLDN16 gene mutation (W237X) who had early onset of renal insufficiency despite early diagnosis at 2 months. He also had additional abnormalities including horseshoe kidney, neonatal teeth, atypical face, cardiac abnormalities including coarctation of the aorta associated with atrial and ventricular septal defects, umbilical hernia and hypertrichosis. To the best of our knowledge, this is the youngest case diagnosed as familial hypomagnesemia with hypercalciuria and nephrocalcinosis and the first case having such additional congenital abnormalities independent of the disease itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Mutations in the chloride channel gene, CLCNKB, usually cause classic Bartter syndrome (cBS) or a mixed Bartter-Gitelman phenotype in the first years of life. METHODS: We report an adult woman with atypical BS caused by a homozygous missense mutation, A204T, in the CLCNKB gene, which has previously been described as the apparently unique cause of cBS in Spain. RESULTS: The evaluation of this patient revealed an overlap of phenotypic features ranging from severe biochemical and systemic disturbances typical of cBS to scarce symptoms and diagnosis in the adult age typical of Gitelman syndrome. The tubular disease caused a dramatic effect on mental, growth and puberal development leading to low IQ, final short stature and abnormal ovarian function. Furthermore, low serum PTH concentrations with concomitant nephrocalcinosis and normocalcaemia were observed. Both ovarian function and serum PTH levels were normalized after treatment with cyclooxygenase inhibitors. CONCLUSIONS: The present report confirms a weak genotype-phenotype correlation in patients with CLCNKB mutations and supports the founder effect of the A204T mutation in Spain. In our country, the genetic diagnosis of adult patients with hereditary hypokalaemic tubulopathies should include a screening of A204T mutation in the CLCNKB gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The KEL2/KEL1 (k/K) blood group polymorphism represents 578C>T in the KEL gene and Thr193Met in the Kell glycoprotein. Anti-KEL1 can cause severe hemolytic disease of the fetus and newborn. Molecular genotyping for KEL*1 is routinely used for assessing whether a fetus is at risk. Red blood cells (RBCs) from a KEL:1 blood donor (D1) were found to have abnormal KEL1 expression during evaluation of anti-KEL1 reagents. STUDY DESIGN AND METHODS: Kell genotyping methods, including KEL exon 6 direct sequencing, were applied. KEL cDNA from D1 was sequenced. Flow cytometry was used to assess KEL1 and KEL2 RBC expression. RESULTS: RBCs from the donor, her mother, and an unrelated donor gave weak or negative reactions with some anti-KEL1 reagents. Other Kell-system antigens appeared normal. The three individuals were homozygous for KEL C578 (KEL*2) but heterozygous for a 577A>T transversion, encoding Ser193. They appeared to be KEL*2 homozygotes by routine genotyping methods. Flow cytometry revealed weak KEL1 expression and normal KEL2, similar to that of KEL*2 homozygotes. CONCLUSION: Ser193 in the Kell glycoprotein appears to result in expression of abnormal KEL1, in addition to KEL2. The mutation is not detected by routine Kell genotyping methods and, because of unpredicted KEL1 expression, could lead to a misdiagnosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Darier's disease is a rare, inherited autosomal dominant skin disorder caused by a mutation in the sarcoendoplasmatic reticulum calcium transporter (SERCA)-2-gene. In a number of pedigrees, Darier's disease closely relates with affective disorder. The most likely hypothesis for this is a susceptibility gene for affective disorder near the SERCA-2-gene. A 6.5-megabase region could be identified as a susceptibility locus. This region constitutes a susceptability locus also in affective disorder without Darier's disease. The underlying gene has not yet been identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alopecia X is a noninflammatory, progressive, bilateral symmetric alopecia in dogs. The disease is mainly found in Nordic breeds. The breed predisposition and a strong familial accumulation suggest a hereditary background. We analyzed the cathepsin L2 gene (CTSL2) as a candidate for alopecia X. The comparative sequencing of 14 affected and 18 control animals revealed ten polymorphisms; however, none of these polymorphisms affected the coding sequence. Haplotype analysis did not reveal an association of one particular CTSL2 haplotype with the disease phenotype; therefore, we conclude that the CTSL2 gene is probably not the causative gene for alopecia X.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ATP-binding-cassette-transporter-A1 (ABCA1) plays a pivotal role in intracellular cholesterol removal, exerting a protective effect against atherosclerosis. ABCA1 gene severe mutations underlie Tangier disease, a rare Mendelian disorder that can lead to premature coronary artery disease (CAD), with age of CAD onset being two decades earlier in mutant homozygotes and one decade earlier in heterozygotes than in mutation non-carriers. It is unknown whether common polymorphisms in ABCA1 could influence age of symptom onset of CAD in the general population. We examined common promoter and non-synonymous coding polymorphisms in relation to age of symptom onset in a group of CAD patients (n = 1164), and also carried out in vitro assays to test effects of the promoter variations on ABCA1 promoter transcriptional activity and effects of the coding variations on ABCA1 function in mediating cellular cholesterol efflux. Age of symptom onset was found to be associated with the promoter - 407G > C polymorphism, being 2.82 years higher in C allele homozygotes than in G allele homozygotes and intermediate in heterozygotes (61.54, 59.79 and 58.72 years, respectively; P = 0.002). In agreement, patients carrying ABCA1 haplotypes containing the -407C allele had higher age of symptom onset. Patients of the G/G or G/C genotype of the -407G > C polymorphism had significant coronary artery stenosis (>75%) at a younger age than those of the C/C genotype (P = 0.003). Reporter gene assays showed that ABCA1 haplotypes bearing the -407C allele had higher promoter activity than haplotypes with the -407G allele. Functional analyses of the coding polymorphisms showed an effect of the V825I substitution on ABCA1 function, with the 825I variant having higher activity in mediating cholesterol efflux than the wild-type (825V). A trend towards higher symptom onset age in 825I allele carriers was observed. The data indicate an influence of common ABCA1 functional polymorphisms on age of symptom onset in CAD patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammation of the subarachnoid and ventricular space contributes to the development of brain damage i.e. cortical necrosis and hippocampal apoptosis in pneumococcal meningitis (PM). Galectin-3 and -9 are known pro-inflammatory mediators and regulators of apoptosis. Here, the gene and protein expression profile for both galectins was assessed in the disease progression of PM. The mRNA of Lgals3 and Lgals9 increased continuously in the cortex and in the hippocampus from 22 h to 44 h after infection. At 44 h after infection, mRNA levels of Lgals9 in the hippocampus were 7-fold and those of Lgals3 were 30-fold higher than in uninfected controls (P<0.01). Galectin-9 protein did not change, but galectin-3 significantly increased in cortex and hippocampus with the duration of PM. Galectin-3 was localized to polymorphonuclear neutrophils, microglia, monocytes and macrophages, suggesting an involvement of galectin-3 in the neuroinflammatory processes leading to brain damage in PM.