62 resultados para Conjugate gradient solver
Resumo:
Gradient-domain path tracing has recently been introduced as an efficient realistic image synthesis algorithm. This paper introduces a bidirectional gradient-domain sampler that outperforms traditional bidirectional path tracing often by a factor of two to five in terms of squared error at equal render time. It also improves over unidirectional gradient-domain path tracing in challenging visibility conditions, similarly as conventional bidirectional path tracing improves over its unidirectional counterpart. Our algorithm leverages a novel multiple importance sampling technique and an efficient implementation of a high-quality shift mapping suitable for bidirectional path tracing. We demonstrate the versatility of our approach in several challenging light transport scenarios.
Resumo:
Partial differential equation (PDE) solvers are commonly employed to study and characterize the parameter space for reaction-diffusion (RD) systems while investigating biological pattern formation. Increasingly, biologists wish to perform such studies with arbitrary surfaces representing ‘real’ 3D geometries for better insights. In this paper, we present a highly optimized CUDA-based solver for RD equations on triangulated meshes in 3D. We demonstrate our solver using a chemotactic model that can be used to study snakeskin pigmentation, for example. We employ a finite element based approach to perform explicit Euler time integrations. We compare our approach to a naive GPU implementation and provide an in-depth performance analysis, demonstrating the significant speedup afforded by our optimizations. The optimization strategies that we exploit could be generalized to other mesh based processing applications with PDE simulations.