123 resultados para Complement Cd4
Resumo:
Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.
Resumo:
Complement is an essential part of the innate immune system and plays a crucial role in organ and islet transplantation. Its activation, triggered for example by ischemia/reperfusion (I/R), significantly influences graft survival, and blocking of complement by inhibitors has been shown to attenuate I/R injury. Another player of innate immunity are the dendritic cells (DC), which form an important link between innate and adaptive immunity. DC are relevant in the induction of an immune response as well as in the maintenance of tolerance. Modulation or inhibition of both components, complement and DC, may be crucial to improve the clinical outcome of solid organ as well as islet transplantation. Low molecular weight dextran sulfate (DXS), a well-known complement inhibitor, has been shown to prevent complement-mediated damage of the donor graft endothelium and is thus acting as an endothelial protectant. In this review we will discuss the evidence for this cytoprotective effect of DXS and also highlight recent data which show that DXS inhibits the maturation of human DC. Taken together the available data suggest that DXS may be a useful reagent to prevent the activation of innate immunity, both in solid organ and islet transplantation.
Resumo:
BACKGROUND: In recent years, treatment options for human immunodeficiency virus type 1 (HIV-1) infection have changed from nonboosted protease inhibitors (PIs) to nonnucleoside reverse-transcriptase inhibitors (NNRTIs) and boosted PI-based antiretroviral drug regimens, but the impact on immunological recovery remains uncertain. METHODS: During January 1996 through December 2004 [corrected] all patients in the Swiss HIV Cohort were included if they received the first combination antiretroviral therapy (cART) and had known baseline CD4(+) T cell counts and HIV-1 RNA values (n = 3293). For follow-up, we used the Swiss HIV Cohort Study database update of May 2007 [corrected] The mean (+/-SD) duration of follow-up was 26.8 +/- 20.5 months. The follow-up time was limited to the duration of the first cART. CD4(+) T cell recovery was analyzed in 3 different treatment groups: nonboosted PI, NNRTI, or boosted PI. The end point was the absolute increase of CD4(+) T cell count in the 3 treatment groups after the initiation of cART. RESULTS: Two thousand five hundred ninety individuals (78.7%) initiated a nonboosted-PI regimen, 452 (13.7%) initiated an NNRTI regimen, and 251 (7.6%) initiated a boosted-PI regimen. Absolute CD4(+) T cell count increases at 48 months were as follows: in the nonboosted-PI group, from 210 to 520 cells/muL; in the NNRTI group, from 220 to 475 cells/muL; and in the boosted-PI group, from 168 to 511 cells/muL. In a multivariate analysis, the treatment group did not affect the response of CD4(+) T cells; however, increased age, pretreatment with nucleoside reverse-transcriptase inhibitors, serological tests positive for hepatitis C virus, Centers for Disease Control and Prevention stage C infection, lower baseline CD4(+) T cell count, and lower baseline HIV-1 RNA level were risk factors for smaller increases in CD4(+) T cell count. CONCLUSION: CD4(+) T cell recovery was similar in patients receiving nonboosted PI-, NNRTI-, and boosted PI-based cART.
Resumo:
BACKGROUND: The aim of this study was to evaluate the effect of CD4+ T-cell counts and other characteristics of HIV-infected individuals on hepatitis C virus (HCV) RNA levels. METHODS: All HIV-HCV-coinfected Swiss HIV Cohort Study participants with available HCV RNA levels and concurrent CD4+ T-cell counts before starting HCV therapy were included. Potential predictors of HCV RNA levels were assessed by multivariate censored linear regression models that adjust for censored values. RESULTS: The study included 1,031 individuals. Low current and nadir CD4+ T-cell counts were significantly associated with higher HCV RNA levels (P = 0.004 and 0.001, respectively). In individuals with current CD4+ T-cell counts < 200/microl, median HCV RNA levels (6.22 log10 IU/ml) were +0.14 and +0.24 log10 IU/ml higher than those with CD4+ T-cell counts of 200-500/microl and > 500/microl. Based on nadir CD4+ T-cell counts, median HCV RNA levels (6.12 log10 IU/ml) in individuals with < 200/microl CD4+ T-cells were +0.06 and +0.44 log10 IU/ml higher than those with nadir T-cell counts of 200-500/microl and > 500/microl. Median HCV RNA levels were also significantly associated with HCV genotype: lower values were associated with genotype 4 and higher values with genotype 2, as compared with genotype 1. Additional significant predictors of lower HCV RNA levels were female gender and HIV transmission through male homosexual contacts. In multivariate analyses, only CD4+ T-cell counts and HCV genotype remained significant predictors of HCV RNA levels. Conclusions: Higher HCV RNA levels were associated with CD4+ T-cell depletion. This finding is in line with the crucial role of CD4+ T-cells in the control of HCV infection.
Resumo:
We assessed the influence of human leukocyte antigen (HLA) alleles HLA-Bw4 and HLA-Bw6 on CD4 T cell recovery after starting successful combination antiretroviral therapy in 265 individuals. The median gains in the CD4 T cell count after 4 years were 258 cells/microL for HLA-Bw4 homozygotes, 321 cells/microL for HLA-Bw4/Bw6 heterozygotes, and 363 cells/microL for HLA-Bw6 homozygotes (P = .01, compared with HLA-Bw4 homozygotes). HLA-Bw4 homozygosity appears to predict an impaired CD4 T cell recovery after initiation of combination antiretroviral therapy.
Resumo:
OBJECTIVE: To determine the effects of cognitive-behavioral stress management (CBSM) training on clinical and psychosocial markers in HIV-infected persons. METHODS: A randomized controlled trial in four HIV outpatient clinics of 104 HIV-infected persons taking combination antiretroviral therapy (cART), measuring HIV-1 surrogate markers, adherence to therapy and well-being 12 months after 12 group sessions of 2 h CBSM training. RESULTS: Intent-to-treat analyses showed no effects on HIV-1 surrogate markers in the CBSM group compared with the control group: HIV-1 RNA < 50 copies/ml in 81.1% [95% confidence interval (CI), 68.0-90.6] and 74.5% (95% CI, 60.4-85.7), respectively (P = 0.34), and mean CD4 cell change from baseline of 53.0 cells/microl (95% CI, 4.1-101.8) and 15.5 cells/microl (95% CI, -34.3 to 65.4), respectively (P = 0.29). Self-reported adherence to therapy did not differ between groups at baseline (P = 0.53) or at 12 month's post-intervention (P = 0.47). Significant benefits of CBSM over no intervention were observed in mean change of quality of life scores: physical health 2.9 (95% CI, 0.7-5.1) and -0.2 (95% CI, -2.1 to 1.8), respectively (P = 0.05); mental health 4.8 (95% CI, 1.8-7.3) and -0.5 (95% CI, -3.3 to 2.2) (P = 0.02); anxiety -2.1 (95% CI, -3.6 to -1.0) and 0.3 (95% CI, -0.7 to 1.4), respectively (P = 0.002); and depression -2.1 (95% CI, -3.2 to -0.9) and 0.02 (95% CI, -1.0 to 1.1), respectively (P = 0.001). Alleviation of depression and anxiety symptoms were most pronounced among participants with high psychological distress at baseline. CONCLUSION: CBSM training of HIV-infected persons taking on cART does not improve clinical outcome but has lasting effects on quality of life and psychological well-being.
Resumo:
TNF plays fundamental roles in the induction and perpetuation of inflammation. The effects of TNF are mediated through TNF receptor (TNFR) 1 or 2. As these two receptors mediate different functions, selective targeting of one receptor may represent a more specific treatment for inflammatory disorders than the complete blocking of TNF. TNFR2 expression is up-regulated in inflammatory bowel disease. Hence, we directly assessed the role of TNFR2 signaling in the CD4(+) T-cell transfer model of colitis using TNFR2(-/-) or WT mice as donors of colitogenic CD4(+)CD45RB(hi) T cells for transfer into syngeneic RAG2(-/-) or RAG2(-/-)TNFR2(-/-) recipient mice. Although the absence of TNFR2 expression by non-lymphoid cells of the recipient mice does not influence the course of colitis, transfer of TNFR2(-/-) CD4(+) T cells leads to an accelerated onset of disease and to more severe signs of inflammation. The enhanced colitogenic potential of TNFR2(-/-) CD4(+) T cells is associated with reduced activation-induced cell death, resulting in an increased accumulation of TNFR2(-/-) CD4(+) T cells. Hence, TNFR2 signaling is crucial for the TNF-dependent contraction of the disease-inducing T cells. Therefore, a selective blocking of TNFR2 may lead to exacerbation rather than attenuation of T-cell-mediated inflammatory disorders.
Resumo:
BACKGROUND: Estimates of the decrease in CD4(+) cell counts in untreated patients with human immunodeficiency virus (HIV) infection are important for patient care and public health. We analyzed CD4(+) cell count decreases in the Cape Town AIDS Cohort and the Swiss HIV Cohort Study. METHODS: We used mixed-effects models and joint models that allowed for the correlation between CD4(+) cell count decreases and survival and stratified analyses by the initial cell count (50-199, 200-349, 350-499, and 500-750 cells/microL). Results are presented as the mean decrease in CD4(+) cell count with 95% confidence intervals (CIs) during the first year after the initial CD4(+) cell count. RESULTS: A total of 784 South African (629 nonwhite) and 2030 Swiss (218 nonwhite) patients with HIV infection contributed 13,388 CD4(+) cell counts. Decreases in CD4(+) cell count were steeper in white patients, patients with higher initial CD4(+) cell counts, and older patients. Decreases ranged from a mean of 38 cells/microL (95% CI, 24-54 cells/microL) in nonwhite patients from the Swiss HIV Cohort Study 15-39 years of age with an initial CD4(+) cell count of 200-349 cells/microL to a mean of 210 cells/microL (95% CI, 143-268 cells/microL) in white patients in the Cape Town AIDS Cohort > or =40 years of age with an initial CD4(+) cell count of 500-750 cells/microL. CONCLUSIONS: Among both patients from Switzerland and patients from South Africa, CD4(+) cell count decreases were greater in white patients with HIV infection than they were in nonwhite patients with HIV infection.
Resumo:
OBJECTIVES: To examine the accuracy of the World Health Organization immunological criteria for virological failure of antiretroviral treatment. METHODS: Analysis of 10 treatment programmes in Africa and South America that monitor both CD4 cell counts and HIV-1 viral load. Adult patients with at least two CD4 counts and viral load measurements between month 6 and 18 after starting a non-nucleoside reverse transcriptase inhibitor-based regimen were included. WHO immunological criteria include CD4 counts persistently <100 cells/microl, a fall below the baseline CD4 count, or a fall of >50% from the peak value. Virological failure was defined as two measurements > or =10 0000 copies/ml (higher threshold) or > or =500 copies/ml (lower threshold). Measures of accuracy with exact binomial 95% confidence intervals (CI) were calculated. RESULTS: A total of 2009 patients were included. During 1856 person-years of follow up 63 patients met the immunological criteria and 35 patients (higher threshold) and 95 patients (lower threshold) met the virological criteria. Sensitivity [95% confidence interval (CI)] was 17.1% (6.6-33.6%) for the higher and 12.6% (6.7-21.0%) for the lower threshold. Corresponding results for specificity were 97.1% (96.3-97.8%) and 97.3% (96.5-98.0%), for positive predictive value 9.5% (3.6-19.6%) and 19.0% (10.2-30.9%) and for negative predictive value 98.5% (97.9-99.0%) and 95.7% (94.7-96.6%). CONCLUSIONS: The positive predictive value of the WHO immunological criteria for virological failure of antiretroviral treatment in resource-limited settings is poor, but the negative predictive value is high. Immunological criteria are more appropriate for ruling out than for ruling in virological failure in resource-limited settings.
Resumo:
BACKGROUND: Studying the interactions between xenoreactive antibodies, complement and coagulation factors with the endothelium in hyperacute and acute vascular rejection usually necessitates the use of in vivo models. Conventional in vitro or ex vivo systems require either serum, plasma or anti-coagulated whole blood, making analysis of coagulation-mediated effects difficult. Here a novel in vitro microcarrier-based system for the study of endothelial cell (EC) activation and damage, using non-anticoagulated whole blood is described. Once established, the model was used to study the effect of the characterized complement- and coagulation inhibitor dextran sulfate (DXS, MW 5000) for its EC protective properties in a xenotransplantation setting. METHODS: Porcine aortic endothelial cells (PAEC), grown to confluence on microcarrier beads, were incubated with non-anticoagulated whole human blood until coagulation occurred or for a maximum of 90 min. PAEC-beads were either pre- or co-incubated with DXS. Phosphate buffered saline (PBS) experiments served as controls. Fluid phase and surface activation markers for complement and coagulation were analyzed as well as binding of DXS to PAEC-beads. RESULTS: Co- as well as pre-incubation of DXS, followed by washing of the beads, significantly prolonged time to coagulation from 39 +/- 12 min (PBS control) to 74 +/- 23 and 77 +/- 20 min, respectively (P < 0.005 vs. PBS). DXS treatment attenuated surface deposition of C1q, C4b/c, C3b/c and C5b-9 without affecting IgG or IgM deposition. Endothelial integrity, expressed by positivity for von Willebrand Factor, was maintained longer with DXS treatment. Compared with PBS controls, both pre- and co-incubation with DXS significantly prolonged activated partial thromboplastin time (>300 s, P < 0.05) and reduced production of thrombin-antithrombin complexes and fibrinopeptide A. Whilst DXS co-incubation completely blocked classical pathway complement activity (CH50 test) DXS pre-incubation or PBS control experiments showed no inhibition. DXS bound to PAEC-beads as visualized using fluorescein-labeled DXS. CONCLUSIONS: This novel in vitro microcarrier model can be used to study EC damage and the complex interactions with whole blood as well as screen ''endothelial protective'' substances in a xenotransplantation setting. DXS provides EC protection in this in vitro setting, attenuating damage of ECs as seen in hyperacute xenograft rejection.
Resumo:
BACKGROUND: Activation of endothelial cells (EC) in xenotransplantation is mostly induced through binding of antibodies (Ab) and activation of the complement system. Activated EC lose their heparan sulfate proteoglycan (HSPG) layer and exhibit a procoagulant and pro-inflammatory cell surface. We have recently shown that the semi-synthetic proteoglycan analog dextran sulfate (DXS, MW 5000) blocks activation of the complement cascade and acts as an EC-protectant both in vitro and in vivo. However, DXS is a strong anticoagulant and systemic use of this substance in a clinical setting might therefore be compromised. It was the aim of this study to investigate a novel, fully synthetic EC-protectant with reduced inhibition of the coagulation system. METHOD: By screening with standard complement (CH50) and coagulation assays (activated partial thromboplastin time, aPTT), a conjugate of tyrosine sulfate to a polymer-backbone (sTyr-PAA) was identified as a candidate EC-protectant. The pathway-specificity of complement inhibition by sTyr-PAA was tested in hemolytic assays. To further characterize the substance, the effects of sTyr-PAA and DXS on complement deposition on pig cells were compared by flow cytometry and cytotoxicity assays. Using fluorescein-labeled sTyr-PAA (sTyr-PAA-Fluo), the binding of sTyr-PAA to cell surfaces was also investigated. RESULTS: Of all tested compounds, sTyr-PAA was the most effective substance in inhibiting all three pathways of complement activation. Its capacity to inhibit the coagulation cascade was significantly reduced as compared with DXS. sTyr-PAA also dose-dependently inhibited deposition of human complement on pig cells and this inhibition correlated with the binding of sTyr-PAA to the cells. Moreover, we were able to demonstrate that sTyr-PAA binds preferentially and dose-dependently to damaged EC. CONCLUSIONS: We could show that sTyr-PAA acts as an EC-protectant by binding to the cells and protecting them from complement-mediated damage. It has less effect on the coagulation system than DXS and may therefore have potential for in vivo application.
Resumo:
Acute vascular rejection represents a formidable barrier to clinical xenotransplantation and it is known that this type of rejection can also be initiated by xenoreactive antibodies that have limited complement-activating ability. Using a sophisticated mouse model, a recent study has provided in vivo evidence for the existence of an IgG(1)-mediated vascular rejection, which uniquely depends on both the activation of complement and interactions with FcgammaRIII on natural killer (NK) cells.
Resumo:
The galactose-alpha-1,3-galactose (alphaGal) carbohydrate epitope is expressed on porcine, but not human cells, and therefore represents a major target for preformed human anti-pig natural Abs (NAb). Based on results from pig-to-primate animal models, NAb binding to porcine endothelial cells will likely induce complement activation, lysis, and hyperacute rejection in pig-to-human xenotransplantation. Human NK cells may also contribute to innate immune responses against xenografts, either by direct recognition of activating molecules on target cells or by FcgammaRIII-mediated xenogeneic Ab-dependent cellular cytotoxicity (ADCC). The present study addressed the question as to whether the lack of alphaGal protects porcine endothelial cells from NAb/complement-induced lysis, direct xenogeneic NK lysis, NAb-dependent ADCC, and adhesion of human NK cells under shear stress. Homologous recombination, panning, and limiting dilution cloning were used to generate an alphaGal-negative porcine endothelial cell line, PED2*3.51. NAb/complement-induced xenogeneic lysis of PED2*3.51 was reduced by an average of 86% compared with the alphaGal-positive phenotype. PED2*3.51 resisted NK cell-mediated ADCC with a reduction of lysis ranging from 30 to 70%. However, direct xenogeneic lysis of PED2*3.51, mediated either by freshly isolated or IL-2-activated human NK cells or the NK cell line NK92, was not reduced. Furthermore, adhesion of IL-2-activated human NK cells did not rely on alphaGal expression. In conclusion, removal of alphaGal leads to a clear reduction in complement-induced lysis and ADCC, but does not resolve adhesion of NK cells and direct anti-porcine NK cytotoxicity, indicating that alphaGal is not a dominant target for direct human NK cytotoxicity against porcine cells.
Resumo:
Acute or even hyperacute humoral graft rejection, mediated by classical pathway complement activation, occurs in allo- and xenotransplantation due to preformed anti-graft antibodies. Intravenous immunoglobulin (IVIg) preparations can prevent complement-mediated tissue injury and delay hyperacute xenograft rejection. It is known that IgM-enriched IVIg (IVIgM) has a higher capacity to block complement than IVIgG. Different IVIgs were therefore tested for specificity of complement inhibition and effect on anti-bacterial activity of human serum. IVIgM-I (Pentaglobin), 12% IgM), IVIgM-II (IgM-fraction of IVIgM-I, 60% IgM), and three different IVIgG (all >95% IgG) were used. The known complement inhibitor dextran sulfate was used as control. Hemolytic assays were performed to analyze pathway-specificity of complement inhibition. Effects of IVIg on complement deposition on pig cells and Escherichia coli were assessed by flow cytometry and cytotoxicity as well as bactericidal assays. Complement inhibition by IVIgM was specific for the classical pathway, with IC50 values of 0.8 mg/ml for IVIgM-II and 1.7 mg/ml for IVIgM-I in the CH50 assay. Only minimal inhibition of the lectin pathway was seen with IVIgM-II (IC50 15.5 mg/ml); no alternative pathway inhibition was observed. IVIgG did not inhibit complement in any hemolytic assay. Classical pathway complement inhibition by IVIgM was confirmed in an in vitro xenotransplantation model with PK15 cells. In contrast, IVIgM did not inhibit (mainly alternative pathway mediated) killing of E. coli by human serum. In conclusion, IgM-enriched IVIg is a specific inhibitor of the classical complement pathway, leaving the alternative pathway intact, which is an important natural anti-bacterial defense, especially for immunosuppressed patients.
Resumo:
Patients with skin nodules characterized by the infiltrate of pleomorphic small/medium T lymphocytes are currently classified as "primary cutaneous CD4+ small-/medium-sized pleomorphic T-cell lymphoma" (SMPTCL) or as T-cell pseudolymphoma. The distinction is often arbitrary, and patients with similar clinicopathologic features have been included in both groups. We studied 136 patients (male:female = 1:1; median age: 53 years, age range: 3-90 years) with cutaneous lesions that could be classified as small-/medium-sized pleomorphic T-cell lymphoma according to current diagnostic criteria. All but 3 patients presented with solitary nodules located mostly on the head and neck area (75%). Histopathologic features were characterized by nonepidermotropic, nodular, or diffuse infiltrates of small- to medium-sized pleomorphic T lymphocytes. A monoclonal rearrangement of the T-cell receptor-gamma gene was found in 60% of tested cases. Follow-up data available for 45 patients revealed that 41 of them were alive without lymphoma after a median time of 63 months (range: 1-357 months), whereas 4 were alive with cutaneous disease (range: 2-16 months). The incongruity between the indolent clinical course and the worrying histopathologic and molecular features poses difficulties in classifying these cases unambiguously as benign or malignant, and it may be better to refer to them with a descriptive term such as "cutaneous nodular proliferation of pleomorphic T lymphocytes of undetermined significance," rather than forcing them into one or the other category. On the other hand, irrespective of the name given to these equivocal cutaneous lymphoid proliferations, published data support a nonaggressive therapeutic strategy, particularly for patients presenting with solitary lesions.