323 resultados para Collan, Fabian


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a part of the respiratory tissue barrier, lung epithelial cells play an important role against the penetration of the body by inhaled particulate foreign materials. In most cell culture models, which are designed to study particle-cell interactions, the cells are immersed in medium. This does not reflect the physiological condition of lung epithelial cells which are exposed to air, separated from it only by a very thin liquid lining layer with a surfactant film at the air-liquid interface. In this study, A549 epithelial cells were grown on microporous membranes in a two chamber system. After the formation of a confluent monolayer the cells were exposed to air. The morphology of the cells and the expression of tight junction proteins were studied with confocal laser scanning and transmission electron microscopy. Air-exposed cells maintained monolayer structure for 2 days, expressed tight junctions and developed transepithelial electrical resistance. Surfactant was produced and released at the apical side of the air-exposed epithelial cells. In order to study particle-cell interactions fluorescent 1 microm polystyrene particles were sprayed over the epithelial surface. After 4 h, 8.8% of particles were found inside the epithelium. This fraction increased to 38% after 24 h. During all observations, particles were always found in the cells but never between them. In this study, we present an in vitro model of the respiratory tract wall consisting of air-exposed lung epithelial cells covered by a liquid lining layer with a surfactant film to study particle-cell interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhaled particles may cause increased pulmonary and cardiovascular morbidity and mortality. The wall structures of airways and alveoli act as a series of structural and functional barriers against inhaled particles. Deposited particles are displaced and come into close association with epithelial cells, macrophages and dendritic cells. The cellular interplay after particle deposition in a triple cell co-culture model of the human airway wall was investigated by laser scanning microscopy. Furthermore, the cellular response was determined by measurement of TNF-alpha. Dendritic cells gained access to the apical side of the epithelium where they sampled particles and interacted with macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Recently, an association of the NFKB1 polymorphism -94ins/delATTG with ulcerative colitis (UC) has been reported. This 4-bp insertion/deletion polymorphism is localized in the promoter region of the NFKB1 gene and appears to be functionally relevant. The aim of the present study was to confirm the association of the -94ins/delATTG (W/D) NFKB1 promoter polymorphism with UC in a population of German origin and to test for a potential association with Crohn's disease (CD). Furthermore, potential interactions of the -94ins/delATTG polymorphism with the IKBL and the IL-1RN genes should be determined. MATERIALS AND METHODS: The study population comprised 630 patients with CD, 365 patients with UC, and 974 healthy controls. Genotyping was performed using polymerase chain reaction and restriction fragment length polymorphism analysis. For statistical evaluation, the chi-square test and the Fisher exact test were used. RESULTS: No significant association of the W/D NFKB1 polymorphism with CD or UC was detected. In addition, no significant interactions between the -94ins/delATTG NFKB1 polymorphism and polymorphisms within the IKBL and the IL-1RN genes, respectively, were found in CD or UC. Also, no significant interactions of the NFKB1 polymorphism with mutations of the CARD15/NOD2 gene and with clinical phenotypes were detected in CD. Moreover, no associations of the NFKB1 polymorphism were found in UC depending on disease localization. CONCLUSIONS: The present study could not confirm the reported association of the -94ins/delATTG NFKB1 polymorphism with UC and also found no evidence for a role of this polymorphism in CD. The results do not give evidence for a role of this NFKB1 polymorphism in the pathogenesis of UC and CD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The number of elderly people is growing in western populations, but only few maximal performance data exist for people >75 years, in particular for European octogenarians. This study was performed to characterize maximal performance of 55 independently living subjects (32 women, 81.1 +/- 3.4 years; 23 men, 81.7 +/- 2.9 years) with a focus on sex differences. Maximal performance was determined in a ramp test to exhaustion on a bicycle ergometer with ergospirometry, electrocardiogram and blood lactate measurements. Maximal isometric extension strength of the legs (MEL) was measured on a force platform in a seated position. Body composition was quantified by X-ray absorptiometry. In >25% of the subjects, serious cardiac abnormalities were detected during the ramp test with men more frequently being affected than women. Maximal oxygen consumption and power output were 18.2 +/- 3.2 versus 25.9 +/- 5.9 ml min(-1) kg(-1) and 66 +/- 12 versus 138 +/- 40 W for women versus men, with a significant sex difference for both parameters. Men outperformed women for MEL with 19.0 +/- 3.8 versus 13.6 +/- 3.3 N kg(-1). Concomitantly, we found a higher proportion of whole body fat in women (32.1 +/- 6.2%) compared to men (20.5 +/- 4.4%). Our study extends previously available maximal performance data for endurance and strength to independently living European octogenarians. As all sex-related differences were still apparent after normalization to lean body mass, it is concluded that it is essential to differentiate between female and male subjects when considering maximal performance parameters in the oldest segment of our population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties of materials at the nanoscale. While the potential technological, diagnostic or therapeutic applications are promising there is a growing body of evidence that the special technological features of nanoparticulate material are associated with biological effects formerly not attributed to the same materials at a larger particle scale. Therefore, studies that address the potential hazards of nanoparticles on biological systems including human health are required. Due to its large surface area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be identified unambiguously using microscopic methods it is desirable to quantify the particle distribution within a cell, an organ or the whole organism. Transmission electron microscopy provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells and to investigate the 3D nature of nanoparticle-lung interactions.This article provides information on the applicability, advantages and disadvantages of electron microscopic preparation techniques and several advanced transmission electron microscopic methods including conventional, immuno and energy-filtered electron microscopy as well as electron tomography for the visualization of both model nanoparticles (e.g. polystyrene) and technologically relevant nanoparticles (e.g. titanium dioxide). Furthermore, we highlight possibilities to combine light and electron microscopic techniques in a correlative approach. Finally, we demonstrate a formal quantitative, i.e. stereological approach to analyze the distributions of nanoparticles in tissues and cells.This comprehensive article aims to provide a basis for scientists in nanoparticle research to integrate electron microscopic analyses into their study design and to select the appropriate microscopic strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Experimental studies provide evidence that inhaled nanoparticles may translocate over the airspace epithelium and cause increased cellular inflammation. Little is known, however, about the dependence of particle size or material on translocation characteristics, inflammatory response and intracellular localization. RESULTS: Using a triple cell co-culture model of the human airway wall composed of epithelial cells, macrophages and dendritic cells we quantified the entering of fine (1 mum) and nano-sized (0.078 mum) polystyrene particles by laser scanning microscopy. The number distribution of particles within the cell types was significantly different between fine and nano-sized particles suggesting different translocation characteristics. Analysis of the intracellular localization of gold (0.025 mum) and titanium dioxide (0.02-0.03 mum) nanoparticles by energy filtering transmission electron microscopy showed differences in intracellular localization depending on particle composition. Titanium dioxide nanoparticles were detected as single particles without membranes as well as in membrane-bound agglomerations. Gold nanoparticles were found inside the cells as free particles only. The potential of the different particle types (different sizes and different materials) to induce a cellular response was determined by measurements of the tumour necrosis factor-alpha in the supernatants. We measured a 2-3 fold increase of tumour necrosis factor-alpha in the supernatants after applying 1 mum polystyrene particles, gold nanoparticles, but not with polystyrene and titanium dioxide nanoparticles. CONCLUSION: Quantitative laser scanning microscopy provided evidence that the translocation and entering characteristics of particles are size-dependent. Energy filtering transmission electron microscopy showed that the intracellular localization of nanoparticles depends on the particle material. Both particle size and material affect the cellular responses to particle exposure as measured by the generation of tumour necrosis factor-alpha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fine particles (0.1-2.5 microm in diameter) may cause increased pulmonary morbidity and mortality. We demonstrate with a cell culture model of the human epithelial airway wall that dendritic cells extend processes between epithelial cells through the tight junctions to collect particles in the "luminal space" and to transport them through cytoplasmic processes between epithelial cells across the epithelium or to transmigrate through the epithelium to take up particles on the epithelial surface. Furthermore, dendritic cells interacted with particle-loaded macrophages on top of the epithelium and with other dendritic cells within or beneath the epithelium to take over particles. By comparing the cellular interplay of dendritic cells and macrophages across epithelial monolayers of different transepithelial electrical resistance, we found that more dendritic cells were involved in particle uptake in A549 cultures showing a low transepithelial electrical resistance compared with dendritic cells in16HBE14o cultures showing a high transepithelial electrical resistance 10 min (23.9% versus 9.5%) and 4 h (42.1% versus 14.6%) after particle exposition. In contrast, the macrophages in A549 co-cultures showed a significantly lower involvement in particle uptake compared with 16HBE14o co-cultures 10 min (12.8% versus 42.8%) and 4 h (57.4% versus 82.7%) after particle exposition. Hence we postulate that the epithelial integrity influences the particle uptake by dendritic cells, and that these two cell types collaborate as sentinels against foreign particulate antigen by building a transepithelial interacting cellular network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pH(i) (intracellular pH) is an important physiological parameter which is altered during hypoxia and ischaemia, pathological conditions accompanied by a dramatic decrease in pH(i). Sensors of pH(i) include ion transport systems which control intracellular Ca2+ gradients and link changes in pH(i) to functions as diverse as proliferation and apoptosis. The annexins are a protein family characterized by Ca2+-dependent interactions with cellular membranes. Additionally, in vitro evidence points to the existence of pH-dependent, Ca(2+)-independent membrane association of several annexins. We show that hypoxia promotes the interaction of the recombinant annexin A2-S100A10 (p11) and annexin A6 with the plasma membrane. We have investigated in vivo the influence of the pH(i) on the membrane association of human annexins A1, A2, A4, A5 and A6 tagged with fluorescent proteins, and characterized this interaction for endogenous annexins present in smooth muscle and HEK (human embryonic kidney)-293 cells biochemically and by immunofluorescence microscopy. Our results show that annexin A6 and the heterotetramer A2-S100A10 (but not annexins A1, A4 and A5) interact independently of Ca2+ with the plasma membrane at pH 6.2 and 6.6. The dimerization of annexin A2 within the annexin A2-S100A10 complex is essential for the pH-dependent membrane interaction at this pH range. The pH-induced membrane binding of annexins A6 and A2-S100A10 might have consequences for their functions as membrane organizers and channel modulators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Surfactant protein D (SP-D) deficient mice develop emphysema-like pathology associated with focal accumulations of foamy alveolar macrophages, an excess of surfactant phospholipids in the alveolar space and both hypertrophy and hyperplasia of alveolar type II cells. These findings are associated with a chronic inflammatory state. Treatment of SP-D deficient mice with a truncated recombinant fragment of human SP-D (rfhSP-D) has been shown to decrease the lipidosis and alveolar macrophage accumulation as well as production of proinflammatory chemokines. The aim of this study was to investigate if rfhSP-D treatment reduces the structural abnormalities in parenchymal architecture and type II cells characteristic of SP-D deficiency. METHODS: SP-D knock-out mice, aged 3 weeks, 6 weeks and 9 weeks were treated with rfhSP-D for 9, 6 and 3 weeks, respectively. All mice were sacrificed at age 12 weeks and compared to both PBS treated SP-D deficient and wild-type groups. Lung structure was quantified by design-based stereology at the light and electron microscopic level. Emphasis was put on quantification of emphysema, type II cell changes and intracellular surfactant. Data were analysed with two sided non-parametric Mann-Whitney U-test. MAIN RESULTS: After 3 weeks of treatment, alveolar number was higher and mean alveolar size was smaller compared to saline-treated SP-D knock-out controls. There was no significant difference concerning these indices of pulmonary emphysema within rfhSP-D treated groups. Type II cell number and size were smaller as a consequence of treatment. The total volume of lamellar bodies per type II cell and per lung was smaller after 6 weeks of treatment. CONCLUSION: Treatment of SP-D deficient mice with rfhSP-D leads to a reduction in the degree of emphysema and a correction of type II cell hyperplasia and hypertrophy. This supports the concept that rfhSP-D might become a therapeutic option in diseases that are characterized by decreased SP-D levels in the lung.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Medial ankle joint pain with localized cartilage degeneration due to medial joint overload in varus malalignment of the hindfoot lends itself to treatment by lateral closing wedge supramalleolar osteotomy. METHODS: From 1998 to 2003, nine patients between the ages of 21 to 59 years were operated. The etiology of the malalignment and degeneration was posttraumatic in eight and childhood osteomyelitis in one. Preoperative and postoperative standing radiographs were analyzed to determine the correction of the deformity and the grade of degeneration. Function and pain were assessed using the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale. The average followup was 56 (range 15 to 88) months. RESULTS: The average time to osseous union was 10 +/- 3.31 weeks. There were no operative or postoperative complications. The average AOFAS score improved from 48 +/- 16.0 preoperatively to 74 +/- 11.7 postoperatively (p<0.004). The average pain subscore improved from 16 +/- 8.8 to 30 +/- 7.1 (p<0.008). The average tibial-ankle surface angle improved from 6.9 +/- 3.8 degrees of varus preoperatively to 0.6 +/- 1.9 degrees of valgus postoperatively (p<0.004). In the sagittal plane, the tibial-lateral-surface angle remained unchanged. At the final followup, two patients showed progression of radiographic ankle arthrosis grades. In one patient, it rose from grade 0 to I. In the other patient it advanced from grade II to III, with subsequent ankle arthrodesis required 16 months after the index procedure. Seven patients returned to their previous work. CONCLUSIONS: Lateral supramalleolar closing wedge osteotomy was an easy and safe procedure, effectively correcting hindfoot malalignment, relieving pain, restoring function, and halting progression of the degeneration in the short-term to mid-term in seven of nine patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The inevitable detachment of tendons and the loss of the forefoot in Chopart and Lisfranc amputations result in equinus and varus of the residual foot. In an insensate foot these deformities can lead to keratotic lesions and ulcerations. The currently available prostheses cannot safely counteract the deforming forces and the resulting complications. METHODS: A new below-knee prosthesis was developed, combining a soft socket with a rigid shaft. The mold is taken with the foot in the corrected position. After manufacturing the shaft, the lateral third of the circumference of the shaft is cut away and reattached distally with a hinge, creating a lateral flap. By closing this flap the hindfoot is gently levered from the varus position into valgus. Ten patients (seven amputations at the Chopart-level, three amputations at the Lisfranc-level) with insensate feet were fitted with this prosthesis at an average of 3 (range 1.5 to 9) months after amputation. The handling, comfort, time of daily use, mobility, correction of malposition and complications were recorded to the latest followup (average 31 months, range 24 to 37 months after amputation). RESULTS: Eight patients evaluated the handling as easy, two as difficult. No patient felt discomfort in the prosthesis. The average time of daily use was 12 hours, and all patients were able to walk. All varus deformities were corrected in the prosthesis. Sagittal alignment was kept neutral. Complications were two minor skin lesions and one small ulcer, all of which responded to conservative treatment, and one ulcer healed after debridement and lengthening of the Achilles tendon. CONCLUSIONS: The "flap-shaft" prosthesis is a valuable option for primary or secondary prosthetic fitting of Chopart-level and Lisfranc-level amputees with insensate feet and flexible equinus and varus deformity at risk for recurrent ulceration. It provided safe and sufficient correction of malpositions and enabled the patients to walk as much as their general condition permitted.